CONTENTS

Engineering and Computer Science at ANU 2
Our degrees 6
Accreditation and connections 8
Flexible Double Degrees 9
Engineering 16
Computing 22
Global opportunities 34
Lifestyle 36
Scholarships 38
Student support 39
How to apply 44
Careers 46
ENGINEERING & COMPUTER SCIENCE AT ANU

Australia’s leading university

Be recognised with an in-demand qualification from Australia’s top university.

At the ANU College of Engineering and Computer Science, you will study at a leading centre for research and education in Australia. The College is at the cutting edge of numerous fields including:

- logic
- algorithms and data
- signal processing
- artificial intelligence
- computer vision and robotics
- computational mechanics
- materials fabrication
- big software systems
- energy
- networked systems
- quantum cybernetics.

Join our community of students, teachers and researchers committed to finding sustainable solutions to the world’s greatest challenges. In return, receive education, research training and real-world experience that ensures you have a comprehensive understanding of a range of interconnected disciplines when you graduate.

You will benefit from a dynamic and pioneering research environment where you will learn in small classes, working alongside teachers who are some of the world’s brightest researchers.

Our researchers collaborate with an extensive network of academic, government and industry partners around Australia, in Europe, across the Asia-Pacific and the United States.

We’re currently working with Ford Motor Company and The Boeing Company to lighten, strengthen, and improve the sustainability of their vehicles and planes.

Our large-scale computational research is supporting product development at some of the largest global tech companies, including Microsoft Research, Facebook, Google, Intel, IBM and Oracle.

You will have opportunities to connect with these partners through a range of hands-on learning and training activities.

See for yourself how an engineering or computer science degree can provide you with the tools to enable change in your world.
First in Australia
ANU is ranked #1 in Australia and #20 in the world.¹

Accommodation
Guaranteed accommodation on campus.
See page 42 for details.

Best city to visit
Lonely Planet ranked Canberra as the World’s #3 best city to visit in 2018.

‘Well above’ world standard
95 per cent of ANU research is rated ‘above’ or ‘well above’ world standard.²

Staff to student ratio
One of the highest academic staff to student ratios among Australia’s leading universities.³

Six Nobel Laureates
The highest number of all Australian universities.

Across the world, demand for engineering and computer science graduates is escalating in industry, business and government.

The impact of technology has been powerful and far-reaching and its practitioners have changed our world.

Modern engineers and computer scientists play an integral role in meeting the greatest challenges of our time, including climate change, humanitarian crises and protecting our natural resources.

Thanks to competitive salaries and exciting opportunities, professionals working in these fields report some of the highest levels of job satisfaction.

A degree in engineering or computer science will reward you while you study, and long after. You will be challenged, placed at the forefront of technological innovation, and have the opportunity to develop transferable skills that can be applied in a range of professional contexts.

The job market is continually changing. Traditional vocations are disappearing or transforming, while new jobs are emerging in response to contemporary needs. Studying engineering or computer science will provide you with skills and attributes that will remain relevant and keep you competitive in the evolving job market.

Future-proof yourself with an engineering or computer science degree from ANU.

"In this day and age, the demand for engineers is high. Yet Australia is currently only producing about half the qualified engineers that it needs. The skills you develop through an engineering degree can be applied in a huge range of contexts. Engineering can lead to a truly rewarding career where you will have an opportunity to make a real impact to the world around you."

Professor Elanor Huntington
Dean, ANU College of Engineering and Computer Science.

#1

International outlook
Ranked first in Australia and 7th in the world for international outlook.¹

Most employable graduates
Ranked first in Australia, and 22nd in the world for Graduate Employability.²

Innovative approach
Develop the research and professional skills required to bring ideas to life with TechLauncher.

Accredited
Six of our undergraduate programs are professionally accredited by Engineers Australia and/or the Australian Computer Society.

Modern degrees
Offered nowhere else in Australia, our engineering programs are modern and unique.

5 star rating
Maximum ratings for student demand research intensity; research grants; staff qualifications and graduate starting salary.³

OUR DEGREES

Choose from eight undergraduate programs, including two Research and Development degrees for high achievers and our Diploma of Computing.

Undergraduate degrees

<table>
<thead>
<tr>
<th>Degree name</th>
<th>Duration (full-time)</th>
<th>2019 Minimum Selection Rank</th>
<th>IB</th>
<th>UK GCE A-levels</th>
<th>Gao Kao (750)</th>
<th>Singapore A Levels</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor of Engineering (Research and Development) (Honours)</td>
<td>4 years</td>
<td>99</td>
<td>42</td>
<td>22</td>
<td>690</td>
<td>17.5</td>
<td>18</td>
</tr>
<tr>
<td>Bachelor of Engineering (Honours)</td>
<td>4 years</td>
<td>90</td>
<td>33</td>
<td>18</td>
<td>570</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Computing / IT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor of Advanced Computing (Research and Development) (Honours)</td>
<td>4 years</td>
<td>99</td>
<td>42</td>
<td>22</td>
<td>690</td>
<td>17.5</td>
<td>24</td>
</tr>
<tr>
<td>Bachelor of Applied Data Analytics</td>
<td>3 years</td>
<td>95</td>
<td>38</td>
<td>20</td>
<td>630</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>Bachelor of Advanced Computing (Honours)</td>
<td>4 years</td>
<td>90</td>
<td>33</td>
<td>18</td>
<td>570</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>Bachelor of Software Engineering (Honours)</td>
<td>4 years</td>
<td>87</td>
<td>32</td>
<td>17</td>
<td>551</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td>Bachelor of Information Technology</td>
<td>3 years</td>
<td>80</td>
<td>29</td>
<td>14</td>
<td>525</td>
<td>10.5</td>
<td>28</td>
</tr>
<tr>
<td>Diploma of Computing*</td>
<td>1 year</td>
<td>70</td>
<td>26</td>
<td>N/A</td>
<td>506</td>
<td>8</td>
<td>30</td>
</tr>
</tbody>
</table>

Already thinking about postgraduate study?

We offer postgraduate study programs in the fields of engineering and computer science.

<table>
<thead>
<tr>
<th>Degree name</th>
<th>Duration (full-time)</th>
<th>Degree name</th>
<th>Duration (full-time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Diploma of Applied Data Analytics</td>
<td>1 year</td>
<td>Master of Engineering in Digital Systems and Telecommunications</td>
<td>2 years</td>
</tr>
<tr>
<td>Graduate Diploma of Computing</td>
<td>1 year</td>
<td>Master of Engineering in Mechatronics</td>
<td>2 years</td>
</tr>
<tr>
<td>Graduate Diploma of Cyber Security, Strategy and Risk Management</td>
<td>1 year</td>
<td>Master of Engineering in Photonics</td>
<td>2 years</td>
</tr>
<tr>
<td>Master of Applied Data Analytics</td>
<td>1.5 years</td>
<td>Master of Engineering in Renewable Energy</td>
<td>2 years</td>
</tr>
<tr>
<td>Master of Computing</td>
<td>2 years</td>
<td>Master of Innovation and Professional Practice</td>
<td>2 years</td>
</tr>
<tr>
<td>Master of Cyber Security, Strategy and Risk Management</td>
<td>1.5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master of Philosophy (MPhil)</td>
<td>2 years</td>
<td>Doctor of Philosophy (PhD)</td>
<td>4 years</td>
</tr>
</tbody>
</table>

GCE A Levels are assessed by the best three or best four subjects. A*:6, A=5, B=4, C=3, D=2, E=1. If four or more subjects are presented, the best four or best three subjects will be used, whichever provides the highest rank. ‡ Minimum result for consideration indicated - case by case consideration. College approval required. * This program is completed at ANU College. See anucollege.edu.au. **NOTE:** Admission requirements may vary from year to year. Admission requirements for entry in 2019 may be subject to change. See programsandcourses.anu.edu.au for any changes in entrance requirements. Admission requirements for international students may vary. Prerequisites apply, please refer to page 38 for more information.
TURN YOUR PASSION INTO A CAREER

Areas of study I enjoy

Degree options

Career possibilities

Bachelor of Engineering (R&D)

Technology entrepreneur

Researcher

ICT Leader

Consultant

Technology researcher and developer

Bachelor of Advanced Computing

Bachelor of Advanced Computing (R&D)

Bachelor of Applied Data Analytics

Database administrator and developer

Policy analyst

Data scientist

Information and data analyst

IT specialist

Web developer

Software engineer

Software consultant

IT consultant

Game developer

Software developer

Bachelor of IT

Senior leader

Consultant

Researcher

Senior manager

Project manager

Biomedical

Electronic and Communication

Mechanical and Material Systems

Mechatronic

Photonic

Renewable Energy

Systems engineer

Accredited engineer in your specialisation:

Engineering, Mathematics, Physics, Chemistry and Biology

IT, Computing and Mathematics

Engineering, Mathematics, Physics, Chemistry and Biology

Areas of study that I enjoy

Degree options

Career possibilities

Undergraduate Programs 2019
Connect with current mentors and future colleagues, and start building a valuable network.

Accreditation
Our undergraduate degrees are professionally accredited by peak National bodies.

Engineers Australia
ANU Engineering and Software Engineering graduates will be Accredited Engineers through Engineers Australia (EA). EA is recognised by international body the Washington Accord meaning you can work overseas in places like the United Kingdom, the United States, Hong Kong, South Africa and Japan. We encourage our students to join Engineers Australia for free to start networking and possibly meet future employers.
Accredited Degrees:
> Bachelor of Engineering (Honours)
> Bachelor of Engineering (Research and Development) (Honours)
> Bachelor of Software Engineering (Honours)

Australian Computer Society
The Australian Computer Society is the professional association for Australia’s Information and Communication Technology sector. ANU Computing graduates will be professionally accredited through the Australian Computer Society. We encourage our computing students to join as student members to take advantage of benefits such as access to networking events, digital magazines and professional development opportunities.
Accredited Degrees:
> Bachelor of Information Technology *
> Bachelor of Software Engineering (Honours)
> Bachelor of Advanced Computing (Honours)
> Bachelor of Advanced Computing (Research and Development) (Honours)

Connections
The Australian National University and the ANU College of Engineering and Computer Science are members of some of Australia’s leading industry groups and international alliances.

Group of Eight
ANU belongs to the Group of Eight, a coalition of leading Australian universities, comprehensive in general and professional education, and distinguished by depth and breadth in research.

IARU
ANU is the only Australian member of the International Alliance of Research Universities, a collaboration of ten of the world’s leading research-intensive universities committed to educating future leaders including Oxford, Yale and Cambridge.

Data61
Data61 is Australia’s leading digital research network. Our students can receive scholarships, research opportunities and support for student initiatives through Data61.

CSIRO
The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia’s national agency for scientific research. With offices within the College, our students regularly undertake research, work experience and graduate placements with CSIRO.

Industry partners
We have close links to many industry partners such as Google, Facebook, The Boeing Company, KPMG, IBM, Microsoft and start-up companies founded by our graduates. More about our industry partners and career outcomes can be found on page 46.

* Only when completing the Information Systems or Software Development major.
ANU has pioneered the Flexible Double Degree so you can satisfy your intellectual curiosity and tailor your studies to prepare for your dream career.

> Complete a second degree by adding one extra year of study.

> You will have a clear advantage when applying for jobs.

> You will have the same full-time workload as a student studying a single undergraduate degree.
FLEXIBLE DOUBLE DEGREE GROUPS

With over 750 possible degree combinations there is a Flexible Double Degree for you. There are three groups to choose from, we’ve listed the most popular combinations below. Build your study plan at programsandcourses.anu.edu.au

Group one: Arts, Social Sciences, Business or Science
UAC code: 130010

<table>
<thead>
<tr>
<th>Four years full time</th>
<th>And combine with over 35 degrees, examples below.</th>
</tr>
</thead>
</table>
| Choose one of these degrees: | Accounting
86 Minimum Selection Rank |
| (Bachelor of Information Technology)*
80 Minimum Selection Rank |
Design Arts A+C |
| Applied Data Analytics
86 Minimum Selection Rank | International Relations
95 Minimum Selection Rank |
| | Actuarial Studies*
89 Minimum Selection Rank |
| | Arts
80 Minimum Selection Rank |
| | Asian Studies
80 Minimum Selection Rank |
| | Commerce^
82 Minimum Selection Rank |
| | Medical Science*
80 Minimum Selection Rank |
| | Music~
80 Minimum Selection Rank |
| | Science
80 Minimum Selection Rank |

Group two: Law
UAC code: 137010

<table>
<thead>
<tr>
<th>Five years full time</th>
<th>And combine with this degree:</th>
</tr>
</thead>
</table>
| Choose one of these degrees: | Laws Honours
98 Minimum Selection Rank |
| (Bachelor of Information Technology)*
80 Minimum Selection Rank | |
| Applied Data Analytics
86 Minimum Selection Rank | |

Group three: Engineering or Advanced Computing
UAC code: 135010

<table>
<thead>
<tr>
<th>Five years full time</th>
<th>And combine with over 35 degrees, examples below.</th>
</tr>
</thead>
</table>
| Choose one of these degrees: | Arts
80 Minimum Selection Rank |
| (Bachelor of Advanced Computing (Honours))*
90 Minimum Selection Rank | Information Technology*
86 Minimum Selection Rank |
| Advanced Computing (R&D) (Honours)*
99 Minimum Selection Rank | Science^
80 Minimum Selection Rank |
| Engineering (Honours)*
90 Minimum Selection Rank | Applied Data Analytics
86 Minimum Selection Rank |
| Engineering (R&D) (Honours)*
87 Minimum Selection Rank | Science
80 Minimum Selection Rank |
| Software Engineering (Honours)*
87 Minimum Selection Rank | Business Administration
95 Minimum Selection Rank |
| | Economics^
86 Minimum Selection Rank |
| | Finance^
86 Minimum Selection Rank |
| | Statistics*
86 Minimum Selection Rank |

A+C Group minimum selection rank plus interview/portfolio or audition requirements apply. See soa.anu.edu.au/apply for more information.
~ Entrance to Performance courses are by audition.
* Program includes another prerequisite in addition to minimum selection rank.
^ Program has assumed knowledge
The courses you take will depend on the structure of your degree and any majors or areas of specialisation you choose to focus on during your studies at ANU.

Single Degree

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1 Major, Minor, Elective, Elective</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1 Major, Minor, Elective, Elective</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1 Major, Major, Elective, Elective</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1 Major, Major, Elective, Elective</td>
</tr>
</tbody>
</table>

Flexible Double Degree

Four year double degree e.g. Bachelor of Information Technology/Bachelor of Science

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1 Core Computing Course, Core Computing Course, Science Major, Science Elective</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1 Core Computing Course, Core Computing Course, Science Major, Science Elective</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1 Core Computing Course, Core Computing Course, Science Major, Science Minor</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1 Core Computing Course, Core Computing Course, Science Major, Science Minor</td>
</tr>
</tbody>
</table>

Five year double degree e.g. Bachelor of Engineering (Honours)/Bachelor of Commerce

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1 Core Engineering Course, Core Engineering Course, Core Engineering Course, Core Commerce Course</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1 Core Engineering Course, Core Engineering Course, Core Engineering Course, Core Commerce Course</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1 Core Engineering Course, Core Engineering Course, Engineering Major Course, Commerce Major Course</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1 Core Engineering Course, Engineering Major Course, Engineering Elective Course, Commerce Major Course</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1 Core Engineering Course, Engineering Major Course, Commerce Elective Course, Commerce Major Course</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1 Core Engineering Course, Engineering Major Course, Commerce Elective Course, Commerce Major Course</td>
</tr>
</tbody>
</table>
Systems Engineering

ANU students develop the skills and expertise to approach systems-level problems.

Today, everything is connected, and the unique interdisciplinary nature of our degrees prepare you to design, analyse, and manage the complex systems that are prevalent in our society.

What you’ll get in an ANU engineering degree

What you’ll study
Core disciplines that modern engineers must understand like electronics, mathematics, mechanics, physics, programming and more.

Commercial imperatives like management, innovation, systems design, analysis, real world projects and more.

An engineering major
> Biomedical Systems
> Electronic and Communication Systems
> Mechanical and Material Systems
> Mechatronic Systems
> Photonic Systems
> Renewable Energy Systems

What you’ll receive
An interdisciplinary understanding of engineering and a clear advantage when you graduate and enter the workforce.

In-demand skills and experience in analysing, designing and managing complex projects and working in and managing teams.

Specialist expertise in at least one engineering discipline, giving you breadth and depth in your knowledge of the field.

#1
Ranked number one in Australia in the following areas
> Electrical and Electronic Engineering.
> Telecommunication Engineering.

* ARWU rankings 2018
Taking a systems approach to engineering smarter and healthier living environments

- **Electronic Systems**: Understand how modern devices are controlled and programmed.
- **Renewable Energy**: Learn about the next generation of energy production.
- **Communication Systems**: Discover the future of data services and connected devices.
- **Biomedical Systems**: Explore the application of nanomaterials and sensors for improving health.
- **Mechatronic Systems**: Control the systems and sensors of autonomous machines.
- **Mechanical Systems**: Design structures to withstand extreme conditions and new uses.
- **Material Systems**: Manipulate modern materials to last longer and become easier to manufacture.
TechLauncher

TechLauncher enables students from any discipline to develop the research and professional skills required to use technology to bring great ideas to life and have a positive impact on our society.

Throughout the TechLauncher program students work closely with industry professionals, technology experts and entrepreneurs to complete projects addressing complex problems in a variety of disciplines and industries, or to create their own start-up enterprises.

Since TechLaunchers inception students have completed countless impactful projects. These include the world’s first Aboriginal Australian language video game; a mobile app allowing cars in convoy to safely communicate with one another; and the design and manufacturing of a leg cover for a prospective Paralympic athlete.

TechLauncher allows students to build strong connections with industry, which often leads to job opportunities.

Past Industry project partners include Thales, Reposit Power, Questacon, Australian Institute of Sport (AIS), CSIRO and more.

“\nThis project has enhanced my ability to engage with a client and with stakeholders. A key takeaway is that effective relationships arise through properly managing expectations and understanding their difference in perspective.

Redg Mathur
Bachelor of Engineering Student
Designed with industry partners, our engineering degrees ensure you develop the skills and expertise that will get you hired.

Engineering

Leading organisations across government, industry and business need modern engineers who can adapt to new technologies, lead engineering teams and who possess skills and expertise across multiple engineering fields.

That’s why we teach systems engineering at ANU. The unique interdisciplinary nature of our degrees will prepare you to design, analyse and manage complex systems or projects, for example, a plane, car or mobile phone. Systems engineering transcends software, electrical and mechanical engineering asking that engineers provide the big picture, and work across teams.

In your first year and a half you’ll study the core foundation and engineering courses, and then you’ll choose an engineering major to specialise in.

In Australia, ANU is the only Australian university whose engineering degree is built on systems engineering. Graduates from other universities often have to complete a postgraduate degree to further develop their expertise.

ANU offers courses in Humanitarian Engineering with global opportunities.

Systems engineering is taught at other world-class universities like the University of Cambridge and Massachusetts Institute of Technology (MIT).
 Bachelor of Engineering (Research & Development)(Honours)

Minimum Selection Rank: 99
Duration: 4 years
UAC Code: 135000
CRICOS Code: 060542F

About the degree

Stand out with your capacity for innovation. In this program you will undertake advanced courses and work alongside distinguished researchers completing research projects in an engineering field that interests you. You will study engineering fundamentals while you are immersed in a research area such as biomedical engineering, mechatronics, solar energy, materials and manufacturing, computer vision for example.

This exceptional degree will allow you to excel in your career, make a real difference to society and help to solve some of the world’s largest problems.

Career outcomes

Our Research and Development (R&D) degrees have a strong professional focus leading to an easy transition into an R&D role as an Accredited Engineer in industry. Equally, the advanced nature of the program ensures those looking to undertake postgraduate research can move into academia.

Specialisations

For a list of specialisations, see page 21.

Accreditation

Graduates of this degree will be Accredited Engineers through the professional body Engineers Australia.

Degree structure

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discovering Engineering</td>
<td>Introduction to Mechanics</td>
</tr>
<tr>
<td></td>
<td>Engineering Sciences</td>
<td>Introduction to Electronics</td>
</tr>
<tr>
<td></td>
<td>Physics 1</td>
<td>Programming for Scientists</td>
</tr>
<tr>
<td></td>
<td>Advanced Mathematics & Applications 1</td>
<td>Advanced Mathematics & Applications 2</td>
</tr>
<tr>
<td>2</td>
<td>Systems Engineering Design</td>
<td>Systems Engineering Analysis</td>
</tr>
<tr>
<td></td>
<td>Mechanical Systems & Design</td>
<td>Engineering Research & Development Project</td>
</tr>
<tr>
<td></td>
<td>Electronic Systems & Design</td>
<td>Engineering Major</td>
</tr>
<tr>
<td></td>
<td>Engineering Research & Development Methods</td>
<td>Elective Course</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Management</td>
<td>Engineering Innovation</td>
</tr>
<tr>
<td></td>
<td>Engineering Research & Development Project</td>
<td>Research & Development Project</td>
</tr>
<tr>
<td></td>
<td>Engineering Major</td>
<td>Engineering Major</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
<tr>
<td>4</td>
<td>Engineering Research & Development Project</td>
<td>Engineering Research & Development Project</td>
</tr>
<tr>
<td></td>
<td>Systems Engineering Project</td>
<td>Engineering Major</td>
</tr>
<tr>
<td></td>
<td>Engineering Major</td>
<td>Engineering Major</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
</tbody>
</table>

Testimonial

I will graduate with all the skills and knowledge gained from an engineering degree but with additional research experience and also industry and academic connections. Conducting research teaches skills that are difficult to gain in a classroom, and will be helpful in achieving my career goals.

Emily Rose Rees
Bachelor of Engineering (R&D) (Honours)
This elite engineering degree will give you access to an innovative structure so you can get involved in project-based research courses in engineering.

As part of the Bachelor of Engineering (Research and Development) (Honours) you will be given unique opportunities to complete exciting research projects with our world-class academics.

From the second year of your degree onwards, these research projects will form part of your coursework, exposing you to cutting-edge research and development activities that are taking place in engineering at ANU.

These research projects are based in different research areas at ANU or within an associated industry partner. You’ll get a taste of what it’s like to undertake research in various engineering disciplines, whilst developing valuable independent research skills.

R&D student project example

World Solar Car Challenge: Systems design framework for a solar PV array

A World Solar Challenge electric vehicle is subject to a number of strict regulations (e.g. size, height, solar-cell area), and practical design constraints (e.g. weight, air resistance). The solar cell array must power the entire vehicle; it must be optically and electrically efficient, but not make the vehicle too heavy or have high drag. The aim of the project was to develop a design for the solar array which was close to ideal. A sensitivity analysis was also undertaken to show which aspects of the design should be prioritised, and which could be compromised for the benefit of other parts of the vehicle.

This involved a detailed optical analysis to determine optimal spacing of the solar cells (light bouncing off the gap can reflect off the interface between air and the clear encapsulating surface, and back onto the cell).

The report generated a number of specific design recommendations for the Sol Invictus team surrounding:

- The transmissivity and thickness of the material covering the cells.
- The angle and position of the majority of the solar array.
- The spacing and arrangements of the individual cells within the array, to maximise optical performance without exceeding mass or size constraints.

Did you know?

- The Bachelor of Engineering is a pathway into the R&D program. If you receive a high distinction average in your first year of study, you can apply to transfer into the R&D program.
- Research opportunities are not only available through the R&D program. Students can undertake Summer Research Scholarships, or voluntarily work with an academic in an area that interests them.

Research Themes

Energy
- Energy Storage
- Photovoltaics
- Solar Thermal

Information
- Acoustics and Audio
- Communications
- Computer Vision
- Networked Systems
- Quantum Cybernetics
- Robotics
- Signal Processing

Fabrication
- Manufacturing
- Micro & Nano Systems
- Optical Devices
- Sensors

Materials
- Biomaterials
- Composite Materials
- Computational Mechanics
- Nanomaterials

"The R&D Program gives students the chance to undertake multiple research projects, in a range of disciplines, as part of their engineering degree. The projects are supervised by leading researchers across the College. It's a great foundation for students thinking of going on to research positions in industry, or a PhD."

Dr Daniel MacDonald
Convenor of the Bachelor of Engineering (R&D) (Honours)
About the degree

Do you want to make a difference to society, or solve some of the world’s largest problems? Would you like to make solar energy technology more efficient, invent the next generation of smartphones or new materials that support the growth of human cells? If you’re creative, enjoy teamwork, mathematics or science, then engineering could be for you.

The unique interdisciplinary nature of this degree goes beyond traditional engineering fields. It will prepare you to design, analyse, and manage the complex systems that are prevalent in our society. You will be exposed to several engineering disciplines during your degree – not just one – as well as acquiring deep expertise in a discipline of your choice. For the first 18 months, you will study core foundation and engineering courses. After that, you can choose to specialise in anything from biomedical systems to mechatronics.

Career outcomes

Engineering careers are diverse and in demand in Australia and overseas. At ANU you will develop skills and abilities that are highly sought after in engineering and other organisations. Due to the unique interdisciplinary approach, many of our graduates quickly progress to senior roles. For more information about engineering careers, turn to page 46.

Specialisations

For a list of specialisations, see page 21.

Accreditation

Graduates of this degree will be Accredited Engineers through the professional body Engineers Australia.

Degree structure

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discovering Engineering</td>
<td>Introduction to Mechanics</td>
</tr>
<tr>
<td>1</td>
<td>Engineering Sciences</td>
<td>Introduction to Electronics</td>
</tr>
<tr>
<td></td>
<td>Physics 1</td>
<td>Programming for Scientists</td>
</tr>
<tr>
<td></td>
<td>Mathematics & Applications 1</td>
<td>Mathematics & Applications 2</td>
</tr>
<tr>
<td>2</td>
<td>Systems Engineering Design</td>
<td>Systems Engineering Analysis</td>
</tr>
<tr>
<td></td>
<td>Mechanical Systems & Design</td>
<td>Engineering Major</td>
</tr>
<tr>
<td></td>
<td>Electronic Systems & Design</td>
<td>Elective Course</td>
</tr>
<tr>
<td></td>
<td>Computing for Engineering Simulation</td>
<td>Elective Course</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Management</td>
<td>Engineering Innovation</td>
</tr>
<tr>
<td></td>
<td>Engineering Major</td>
<td>Engineering Major</td>
</tr>
<tr>
<td></td>
<td>Engineering Major</td>
<td>Engineering Major</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
<tr>
<td>4</td>
<td>Systems Engineering Project</td>
<td>Individual Project</td>
</tr>
<tr>
<td></td>
<td>Individual Project</td>
<td>Engineering Core Course</td>
</tr>
<tr>
<td></td>
<td>Engineering Major</td>
<td>Engineering Core Course</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
</tbody>
</table>

The systems approach has allowed me to understand where my specific technical knowledge as a mechanical and materials engineer interacts with other disciplines both within engineering and beyond to do the most effective work.

Samuel Palmer

Bachelor of Engineering (Honours) / Bachelor of Science
ENGINEERING SPECIALISATIONS

Your engineering specialisations will provide you with expertise in an engineering discipline, giving you breadth and depth in your knowledge of the field.

Biomedical Systems
Biomedical engineering is an interdisciplinary field that merges biological research with various fields of materials engineering, imaging and sensing, and nanotechnology. This specialisation has a particular emphasis on the emerging field of bio-nanotechnology, which can be exploited to create new materials for advanced medical outcomes.

Electronic and Communication Systems
This major covers the fundamentals of communications systems. Communications engineering underpins a wide range of modern technologies such as the internet, smart phones and smart sensors. Students will gain a deep understanding of the signal processing and information theory that underpins communications system blocks, practical exposure to data communications networks and an introduction to digital and analogue electronics.

Mechanical and Material Systems
This major has a focus on the relationship between the microstructure of materials, processing, and their mechanical behaviour. Students will study a broad range of materials including, metals, ceramics, polymers and fibre-reinforced composites. These materials have applications in a range of industries such as energy, automotive, aerospace and transport.

Mechatronic Systems
Mechatronics is an emerging engineering discipline based on the integration of mechanical, electrical and computing technology for advanced engineering applications. Engineers with a specialisation in mechatronics are at the forefront of developments in defence, space, medical, transport, mining and manufacturing industries.

Photonic Systems
Photonics relates to the manipulation, transmission and storage of light data. The main application for many years has been in the development of the world’s vast fibre optic telecommunications networks. Now there is an increasing use of photonics in a broad range of human endeavours such as sensing, security, architecture, astronomy, transport, medicine, solar energy, nanophotonics and forensic science.

Renewable Energy Systems
Students who complete this specialisation will be at the forefront of technological developments that will provide solutions to future energy needs. This major is aligned with extensive research into photovoltaic and solar thermal energy systems.
Prepare for jobs of the future in one of Australia’s fastest growing industries.

At ANU, our undergraduate courses in computing focus on the disciplines of computer science, computing, information technology and software engineering. These degrees will provide you with the skills, experience and tools to become innovators and future leaders of the ICT revolution; developing solutions to solve complex, real world problems through emphasising foundations, creativity, design and engineering processes. Our students are in high demand as interns, and regularly win industry awards for their outstanding work.

The world-class resources and industry linkages of the Research School of Computer Science mean you will have the opportunity to work closely with Data61- Australia’s leading digital research network, the Computational Informatics Division of the CSIRO and the National Computational Infrastructure facility, home to Australia’s largest open supercomputer system.

In Australia’s fastest growing industry, graduates of computing degrees can expect attractive salary prospects, strong job opportunities and great job satisfaction. Graduates are widely recognised as solid professionals who are able to drive innovation in industry and government.

Many of our graduates successfully start their own companies after graduating or even before graduating.

ANU is home to Raijin – Australia’s fastest research supercomputer.

As a student, you have the opportunity to get involved with Raijin.
About the program

Be unique and get innovative. This interdisciplinary program is designed for high achieving students and will prepare you to be a future leader of the information and communications technology revolution.

In this program you will learn advanced computing techniques and have the opportunity to complete a unique specialisation, and you will also develop exceptional professional skills including communication and teamwork. It also is a great pathway to a PhD.

Throughout the program you will work alongside distinguished researchers at ANU and pursue research projects in your own area of interest.

Career outcomes

This professional, distinguished undergraduate degree is like no other in Australia and as a graduate of this program, you will be uniquely positioned to develop technical or research orientated career in industry, or undertake postgraduate research in computing. Opportunities exist in high-tech industries, software start-up companies, computing research and development as well as specialised computing companies.

Specialisations

For a list of specialisations, turn to page 31.

Accreditation

Graduates of this degree will be accredited through the Australian Computer Society.

Degree structure

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Programming as Problem Solving (Advanced)</td>
<td>Structured Programming (Advanced)</td>
</tr>
<tr>
<td></td>
<td>Discrete Mathematical Models</td>
<td>Foundations of Computing</td>
</tr>
<tr>
<td></td>
<td>Mathematics and Applications 1</td>
<td>Mathematics and Applications 2</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
<tr>
<td>2</td>
<td>Software Design Methodologies</td>
<td>Software Engineering</td>
</tr>
<tr>
<td></td>
<td>Computer Organisation and Program Execution</td>
<td>Systems, Networks and Concurrency</td>
</tr>
<tr>
<td></td>
<td>Introduction to Data Management, Analysis and</td>
<td>Algorithms</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Computing R&D Methods</td>
<td>Studies in Advanced Computing R&D</td>
</tr>
<tr>
<td>3</td>
<td>Computing Research Specialisation</td>
<td>Computing Research Specialisation</td>
</tr>
<tr>
<td></td>
<td>Individual Research Project</td>
<td>Individual Research Project</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
<tr>
<td>4</td>
<td>Computing Research Specialisation</td>
<td>Computing Research Specialisation</td>
</tr>
<tr>
<td></td>
<td>Advanced Computing Research Project</td>
<td>Advanced Computing Research Project</td>
</tr>
<tr>
<td></td>
<td>Advanced Computing Research Project</td>
<td>Advanced Computing Research Project</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
</tbody>
</table>

Minimum Selection Rank: 99
UAC Code: 135700
CRICOS Code: 085359K

Advanced Computing (R&D) (Honours) has given me the chance to work alongside distinguished researchers and pursue a variety of challenging computer science problems from a diverse range of fields.

Brenda Wang
Bachelor of Advanced Computing (R&D) (Honours)
Computing Research Projects

This elite computing project will give you the opportunity to work on real research projects either in a group or on your own, from a variety of areas within the College.

In Computing Research Projects you will undertake an accelerated mode of learning, and the tools to develop the next generation of computing applications.

From the second year of your degree onwards, these research projects will form part of your coursework, exposing you to cutting-edge research and development activities that are taking place in computer science at ANU.

These research projects are based in different research areas at ANU or within an associated industry partner. You’ll get a taste of what it’s like to undertake research in various engineering disciplines, whilst developing valuable independent research skills.

R&D student project examples

Robust Map-Augmented Localisation Using Particle Filters
In this project software was created to track the location of a car, taking into account readings from a GPS receiver, wheel sensors, and knowledge of where the vehicle “should be” according to a street map. Using all three sources of information offers superior accuracy to using only raw GPS readings, which is helpful for street navigation and autonomous vehicles.

Video Pose Estimation with Convolutional Neural Networks Recombination
This project aimed to perform pose estimation, the location of a person’s joints, in videos by combining a state-of-the-art neural network-based pose estimation system for still images with an existing algorithm for pose estimation in videos. The latter algorithm processed video frames using an inferior method to the former neural network-based algorithm, but compensated with a high-level understanding of motion across entire video sequences. Hence, combining the two algorithms yielded a slight boost in accuracy.

Research Themes

Intelligence
Data Mining & Matching
Intelligent Agents
Knowledge
Representation and Reasoning
Machine Learning
Planning and Optimisation

Systems
High Performance Computing
Human-Centred Computing
Programming Languages, Design & Implementation
Software Engineering

Theory
Algorithms
Databases
Logic

Did you know?

> If you missed out on academic entry to R&D you can transfer into the degree if you maintain a high distinction average in your first year of study.

> Research opportunities are not only available through the R&D degree. Students can undertake Summer Research Scholarships, or voluntarily work with an academic in an area that interests them.

Dr Eric McCreath
Convenor of the Advanced Computing R&D program.

“...

In the Bachelor of Advanced Computing (R&D) (Honours) students learn the foundations of computer science upon which they build knowledge and skills in specialised areas of computing such as computer systems, artificial intelligence, and theoretical computing. Students also undertake individual research projects with some of Australia’s leading computing researchers pushing the boundaries of what computers can do.

”
BACHELOR OF ADVANCED COMPUTING (HONOURS)

Minimum Selection Rank: 90
UAC Code: 135705
Duration: 4 years
CRICOS Code: 077939A

About the degree

There is hardly any aspect of modern society untouched by the computing revolution. Some of the biggest challenges we face today, including climate change and health, will all be solved with an ICT component, whether it is in predicting efficiencies in renewable energy systems or using machine based learning to diagnose illnesses.

In this program you will learn advanced computing techniques and have the opportunity to complete a unique specialisation. You will also develop exceptional professional skills including communication and teamwork.

If you are interested in mastering challenging projects, the Bachelor of Advanced Computing (Honours) can launch you into an amazing career. There are many innovative ways to use skills from this course in a range of disciplines.

Career outcomes

The best computing professionals often have knowledge in fields wider than computing alone. Our graduates will be ideally positioned to shape their chosen sector of the computing industry now and into the future, acquiring the skills and knowledge to become leaders in the ICT industry.

Specialisations

For a list of specialisations, turn to page 31.

Accreditation

Graduate of this degree will be accredited through the Australian Computer Society.

My time in the Bachelor of Advanced Computing (Honours) has been the perfect balance between industry connections and research experience that has opened my eyes to how I want to change the world.

Jay Hansen
Bachelor of Advanced Computing (Honours)
About the degree

Software Engineering is about building effective software systems that address complex problems in a broad range of domains including transport, finance, medicine, science and the arts.

We adopt a systems approach that not only covers the technical aspects of professional practice, innovation and research, but also the complex socio-technical context in which these activities occur. This includes approaches to deal with uncertainty and risk, design, modern management practices, ethics and communication.

You will develop these skills and capabilities through a balance of theoretical study, team projects with industry partners, and work experience. You also have the opportunity to develop innovation and entrepreneurial capabilities by working on your own start-ups with industry entrepreneurs.

Career outcomes

Upon graduation you will be accredited by both Engineers Australia and the Australian Computer Science Society opening up a wide range of job possibilities. The technical depth and real-world competencies achieved by our graduates are what can often differentiate the ordinary from the best in the software industry.

Specialisations

For a list of specialisations, turn to page 31.

Accreditation

Graduates of this degree will be Accredited Engineers through the professional body Engineers Australia as well as through the Australian Computing Society.

"The Bachelor of Software Engineering (Honours) allowed me to gain essential systems and design thinking skills, and gave me the confidence to explore both engineering and computer science without the need of a double degree."

Yaya Lu
Bachelor of Software Engineering (Honours)
About the degree

Information Technology (IT) is everywhere – from digital technology in your TV, laptop, gaming system, mobile phone, watch, music, movies, kitchen, car, bank or your next gig tickets. It is changing the way we live, learn, work and even socialise.

In this degree you will get a strong grounding in computing fundamentals to tackle the progressive nature of IT. With IT being an intrinsic part of all industries, knowledge of software development and information systems is highly sought after by all employers.

If you are interested in the IT revolution, joining a truly globalised and fast changing industry, then the ANU Bachelor of Information Technology is for you.

Career outcomes

The career options for ANU graduates in IT, and in particular, students who have completed a combined degree, are wide and varied. IT skills are a real competitive advantage and all organisations, large and small, public and private, need people to work on their IT systems, or to understand them.

Majors

For a list of majors, turn to page 31.

Accreditation

Graduates of this degree will be accredited through the Australian Computer Society.
Bachelor of Applied Data Analytics

Minimum Selection Rank: 95
UAC Code: 135801
CRICOS Code: 094621D

About the degree

This program is designed to meet demands for a workforce with skills in data analytics to inform high-quality, data-driven decision-making. This reflects a wider challenge to Australian business, government and community in terms of the effective use of public and commercial data for decision-making.

The rapid expansion of a digitally enabled environment has broadened both the threat and the opportunity in data-driven innovation. This multi-disciplinary bachelor degree comprising computer science, statistics, and social science courses can be applied across a host of settings from business, finance and health, through to national security.

Career outcomes

The Bachelor of Applied Data Analytics is an inter-disciplinary degree that is designed to address a global shortage of graduates with skills in data analytics as applied to high-quality, data-informed decision-making. It is designed to develop inter-disciplinary knowledge across the three base disciplines of computing, statistics and social science. Our graduates will be ideally positioned to enter into jobs such as a Technology Entrepreneur, Database Administrator and Developer, Policy Analyst, Information and Data Analyst and Data Scientist.

Elective study

Once you have met the program requirements of your degree, you may have enough electives to complete an additional major, minor or specialisation.

Degree structure

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Programming as Problem Solving</td>
<td>Structured Programming</td>
</tr>
<tr>
<td></td>
<td>Mathematics and Applications 1</td>
<td>Relational Databases</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Foundations of Social Research</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Mathematics and Applications 2</td>
</tr>
<tr>
<td>2</td>
<td>Data Mining</td>
<td>Data Wrangling</td>
</tr>
<tr>
<td></td>
<td>Regression Modelling</td>
<td>Introductory Mathematical Statistics</td>
</tr>
<tr>
<td></td>
<td>Population Analysis</td>
<td>Online Research Methods</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
<tr>
<td>3</td>
<td>Social Science of the Internet</td>
<td>Graphical Data Analysis</td>
</tr>
<tr>
<td></td>
<td>Statistical Learning</td>
<td>Data for Decision Making</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
<tr>
<td></td>
<td>Elective Course</td>
<td>Elective Course</td>
</tr>
</tbody>
</table>

Honours Year

An honours year of the Bachelor of Applied Data Analytics is also available for eligible students. The honours year will provide you with high level preparation for life as a practitioner or for undertaking further study. You will be provided with research methods and principles training, undertake some advanced coursework, and complete a major research project.

The passionate lecturers are eager to share their knowledge and are a constant source of encouragement and influence. I also find the students who aren’t afraid to dream big give me courage and optimism.

Amy Yu
Bachelor of Applied Data Analytics / Bachelor of Commerce
About the diploma

The Diploma of Computing will provide you with a grounding in all the basic requirements for success in a degree in IT.

The Diploma of Computing is designed for students who are interested in studying a Bachelor of Information Technology at ANU. Graduates who meet the progression requirements may articulate into the Bachelor of Information Technology and may receive up to one year (48 units) of credit. Alternatively, it may be used as an exit point at the Diploma level.

In this program you can major in programming, web design, databases and information systems.

Career Outcomes

Graduates from ANU have been rated as Australia’s most employable graduates and among the most sought after by employers worldwide.

The latest Global Employability University Ranking, published by the Times Higher Education, rated ANU as Australia’s top university for getting a job for the fourth year in a row.

Progression

Upon successful completion of the Diploma of Computing with no more than one fail or incomplete grade, students will be eligible to enter into the second year of the Bachelor of Information Technology.

For more information about the Bachelor of Information Technology, turn to page 29.

The Diploma of Computing will provide you with academic communication skills and discipline-specific knowledge in a hands-on learning environment, while building your confidence and ability to progress to further university study.

Mr Patrick Tran
Convenor of the Diploma of Computing

The Diploma of Computing is a great way to start your university journey. I was impressed with the high quality of the lectures and tutorials, and thoroughly enjoyed the group work that lead to amazing discussions between the students and teachers.

Run Wang
Diploma of Computing
A major or specialisation will provide you with expertise in a computer science discipline, giving you breadth and depth in your knowledge of the field.

Bachelor of Advanced Computing

R&D/Bachelor of Advanced Computing:

Intelligent Systems specialisation

Intelligent Systems exceed human intellectual capabilities in an increasing number of domains. This specialisation offers courses in a wide range of topics such as Artificial Intelligence search, optimisation, knowledge representation, reasoning, planning, diagnosis, machine learning, document analysis, intelligent agents, data-driven approaches (mining, matching, wrangling, modelling), and bio-inspired computing (neural networks, evolutionary algorithms, human brain and mind).

Systems & Architecture specialisation

Computer Systems have provided the software foundations upon which modern applications run. As we push the limits of what can be done, these foundations are also pushed. This major focuses on the computer systems that provide this critical resource and explores topics such as operating systems, networks, concurrency, electronics, embedded systems, and high performance computing.

Theoretical Computer Science specialisation

Theoretical Computer Science focuses on more abstract or mathematical aspects of computing. You will use the tools of logic and discrete mathematics to investigate the complexity of problems, the scope and limits of computation and the fundamental properties of algorithms. The focus of this specialisation is on the foundations of the entire discipline: the science and mathematics of computation itself.

Bachelor of Software Engineering:

Majors and specialisations are not compulsory in the Bachelor of Software Engineering (Honours) and are only possible in the single degree. You can study any of the three Advanced Computing specialisation listed above, the Information Systems major, or any other major/minor from across the university using your university electives.

Bachelor of Information Technology:

Data Science major

The Data Science major teaches the principles, theories and skills used in developing methods to collect, manage, analyse, and interpret data in various formats and at a large scale. You will learn to use a broad range of techniques to extract knowledge and insights from large and complex data, including structured and unstructured data. The major involves courses in areas such as database systems, data mining, artificial intelligence, machine learning and more.

Information Systems major

The Information Systems major integrates conceptual and practical skills related to the creation, flow and usage of information within organisations. You will develop an understanding of organisations, and the knowledge and skills required for systems analysis and design, and to manage organisational computer systems applications.

Software Development major

The Software Development major integrates the conceptual and practical skills related to the technology of computer systems used in the creation of high quality software. You will develop the knowledge and skills needed to build software based solutions to complex problems in Information and Communications Technology (ICT), as well as understanding the systems context within which software is developed and operated.

Cyber Security major

The cyber security major provides principles, theories and practical skills required to analyse and manage current cyber security situations. You will learn how to reverse-engineer a given system and to identify and test vulnerabilities. The addressed systems cover the complete range of architectures from individual controllers to the internet.

What is the difference between an elective, major, minor and specialisation?

<table>
<thead>
<tr>
<th>Elective</th>
<th>Specialisation/Minor</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>A single course that can be studied in any academic area (6 units)</td>
<td>A group of four courses to give you specialist knowledge in a particular area (24 units)</td>
<td>A group of eight courses to give you in-depth knowledge in a particular area (48 units)</td>
</tr>
<tr>
<td>6 units</td>
<td>6 units</td>
<td>6 units</td>
</tr>
<tr>
<td>6 units</td>
<td>6 units</td>
<td>6 units</td>
</tr>
<tr>
<td>6 units</td>
<td>6 units</td>
<td>6 units</td>
</tr>
</tbody>
</table>

This major is not accredited with the Australian Computer Society
PRACTICAL EXPERIENCE IN ENGINEERING

Work Experience
Our engineering students take part in 60 days of work experience to meet accreditation requirements with Engineers Australia. Work experience offers students the opportunity to integrate academic theory and real world practice, enhance technical and leadership skills, experience a professional setting, whilst also making valuable connections with industry.

Shaw Kudo
Bachelor of Engineering (Honours)/Asia-Pacific Studies

“Towards the end of my degree, I worked as a project officer in the ICT industry. It was a great opportunity to apply some of the systems engineering principles gained in the earlier years of the degree in real-world projects. There’s an abundance of opportunities available for part-time and full-time work in Canberra to check out.”

Projects
In addition to compulsory work experience, our engineering students undertake a systems engineering industry project. In these projects students work in teams with a client to develop the requirements and key performance indicators to guide them through the design. The teams then proceed through a systems design process including conceptual design, subsystem requirements, and quantitative trade-off analyses, using the full range of engineering science and professional skills developed during the program. The project emphasises teamwork, communication skills, team and personal management and a professional approach to engineering design.

Internships
Through our industry links, students are offered opportunities to undertake internships. This allows students to gain hands-on experience in a workplace environment relevant to their area of future career interests and current academic studies. Students can receive credit towards their program based on learning outcomes during their placement.
Work Experience

Our computing students have a vast amount of opportunities to get work experience on their doorstep. Canberra has over 100 IT related companies, many of them with links to ANU such as being our industry partner, have employed our graduates or part of our career fairs. The Australian Computer Society is a great association to get links for work experience during your studies and also for potential employers after graduation.

Projects

TechLauncher exposes our third and fourth year computing students with real industry projects. In teams, students will work with an industry client to develop and deploy a software system. Each group is allocated an industry based mentor and will have the opportunity to present their project at a networking event held each year.

Students also have the option to choose the start-up project for a software-based start-up business. In the first year, students will develop their idea and an initial product. In the second year, students will work towards entering external development programs. Upon graduating, many of our students successfully launch this idea into a real company.

Internships

Through our industry links, students are offered opportunities to undertake internships. This allows students to gain hands-on experience in a workplace environment relevant to their future career interests and current academic studies. Students can receive credit towards their program based on learning outcomes during their placement.
GLOBAL OPPORTUNITIES

At ANU you will be encouraged to expand your outlook and take advantage of international opportunities.

Many of these opportunities can count towards your degree, for which you can receive funding.

Short Term International Opportunities
ANU offers a wide range of short term international opportunities. One example is PRIMO for students in first year, an opportunity no other Australian university offers.

“\[\text{I participated in the Engineers Without Borders Design Summit where I was given the opportunity to visit a rural community in the southwest of India. I saw firsthand the impact that technology can have on people’s lives and I believe that I have become a better and more equipped engineer as a result.}\]\n
Liam Highmore,
Bachelor of Engineering (Honours)

“I absolutely loved my time in China. My studies, the university, the city, the people, the culture, the food, the chaos, all made for an experience that I will never forget. I would definitely recommend for students to take part in this program as well as others that are similar.”

Michaela Gilchrist,
Bachelor of Engineering (Honours)

Engineers Without Borders Design Summits

Engineers Without Borders provides a two-week program that attracts engineering students from around Australia who meet with developing communities to learn about community development, appropriate technology and humanitarian engineering.

Globex Program

The Globex Program at Peking University in China is an intensive exchange opportunity for engineering students held each year in July.

IARU Global Summer Program

ANU is the only Australian member of the International Alliance of Research Universities (IARU). Through IARU, you can study at some of the world’s top universities for up to six weeks and connect with outstanding peers at the University of Cambridge, Yale University, the National University of Singapore and more.
Support for International Travel

At ANU you have many options to receive financial support for your international travel including government funding, scholarships from our industry partners and grants from the university.

Westpac Asian Exchange Scholarship

Receive up to $12,000 to support an overseas learning experience at one of seven top Asian Universities.

New Colombo Plan Scholarship Program

Receive support through the Australian Government Department of Foreign Affairs and Trade for an overseas learning and research experience in the Indo-Pacific Region.

International Global Exchange

Choose from one of 170 partner universities from 35 different countries and spend one or two semesters at a leading university while you earn credit towards your ANU degree.

“There are many opportunities that ANU offers, and support for you to participate in them. I was lucky enough to be part of the Enabled Futures Singapore Study Tour, assisted by the New Colombo Plan Scholarship. It allowed me to explore the disability and aging context in another country, which was one of the best experiences that I have had at university so far.”

Stephanie Nguyen, Bachelor of Engineering (Honours)

“With a long standing love of travelling, I decided to go on exchange. At the Technical University of Munich (TUM), I had the opportunity of a lifetime. Academically TUM provided me with some skills and education that I couldn’t have had at ANU. I met people from all over the world and made life-long friendships.

Imogen Blanch, Bachelor of Engineering (Honours)/ Bachelor of Arts

For more information go to: cecs.anu.edu.au/current-students
ANU is in the heart of Canberra, Australia’s capital. It’s a thriving city that’s been ranked the world’s most liveable.

Best city to live in
Canberra ranked the world most livable city two years in a row according to OECD (2014).

High income
Canberra enjoys Australia’s highest average weekly income at $1,702.10

Diverse population
The population is truly diverse, attracting people from all corners of Australia and across the world.

National institutions
As the capital, Canberra is home to the National Library, Parliament, High Court, numerous museums and embassies.

Commute
Canberra offers the smallest commute times in Australia, extensive bike paths and discounts on public transport.

Road trip?
Canberra is very well situated between Sydney (three hours drive), the ocean (two hours drive) and the ski fields (two hours drive).

Weather
Canberra boasts long sunny days, with an average of 7.4 hours of sunlight.

Capital
Canberra is the best place in Australia to experience events of national importance such as Australia Day.

Four seasons
Canberra is unique in Australia, having all four seasons of the year.
STUDENT LIFE

If you want to make friends for life and get involved in extra-curricular activities ANU is the right place for you.

Campus life
The combination of guaranteed accommodation and only one campus makes campus life vibrant.

Feel safe
Canberra has one of the lowest crime rates in Australia. If you feel unsafe ANU has a bus to take you home.

Student city
Canberra is a student city with the highest student population ratio in Australia.

Libraries
At ANU you have access to six different libraries, with over 2.5 million physical items, and 63 million electronic resources.

Hungry?
ANU has over 35 shops, restaurants and cafes. It also has bank, post office and a gym.

Close to the city
The ANU Campus is only 100 steps to the Canberra CBD, and 150 steps to the lake.

Student clubs
Over 200 student clubs! Get involved in music, film, sport, debating, Harry Potter or perhaps the Chocolate Appreciation Club?

Associations
Engineering (EA) and Computer Science (CSSA) both have very active student associations with game nights, barbeques and more.

Student initiatives
Our students are involved in a variety of initiatives such as Robogals, Engineers Without Borders and start-ups.
The International Undergraduate Merit Scholarship - India has not only enabled me to commit to my academic career but motivated me to do so. With its significant financial assistance, the scholarship has opened a wealth of opportunities for my future and driven me to further contribute back to society later on with my degree.

Chaahat Jain
Bachelor of Advanced Computing (R&D)
Academic Skills and Learning Centre
The Academic Skills and Learning Centre offers ANU students of all levels free and confidential help with their academic work through individual tutorials, workshops, courses and handouts. Students can make an appointment for a free, confidential tutorial with a learning adviser. Students can also attend short courses and workshops that run throughout the semester.

academicskills.anu.edu.au

Access and Inclusion
Access and Inclusion supports the following backgrounds:
> alternative and mature age entry
> students with disabilities
> student carers
> student athletes
> LGBTIQ students

access.inclusion@anu.edu.au

ANU Health Service
The Australian National University Health Service is a fully accredited primary health care facility that provides comprehensive health services to current students and staff of the University.

health.anu.edu.au

SET4ANU
SET4ANU is a fun, free program that assigns a new student to a more experienced student volunteer. The volunteer students, who are called Orientation Leaders, help ease new students into their first few weeks of life at ANU.

anu.edu.au/students/get-involved/communities/set4anu-program

The Counselling Centre
The ANU Counselling Centre provides free, confidential, professional services to students. You can talk to a counsellor about any difficulty or concern that is affecting your studies, or your personal wellbeing.

counselling.anu.edu.au

Study Assist
For domestic students there are a number of ways to get financial assistance while at university. Examples include HECS-HELP, Commonwealth Supported Places, scholarships, grants and bursaries.

studyassist.gov.au

ANU Careers Centre
When you finish your degree, knowing what happens next and being able to navigate the transition to the workplace is a skill that helps you to succeed. The ANU Careers Centre offers students many services relating to planning and starting a career, including career target strategies, tools and career development information. Students can book online for a confidential consultation, attend a drop-in session with one of our Consultants or use ANU CareerHub to look for employment.

ANU CareerHub
The CareerHub is an online vacancy and career information system for the exclusive use of ANU students and recent graduates. It provides access to:
> employment vacancies
> work experience and internship opportunities
> online career planning, job search and application resources
> seminars, workshops, employer presentations and careers events.

Fees
For up-to-date course fees see details on our website.

students.anu.edu.au/fees
ADJUSTMENT FACTORS

Adjustment factors can help you get into your dream degree.

ANU awards National Access Scheme adjustment factors for high achievement in nationally strategic senior secondary subjects and in recognition of difficult circumstances that you may have faced in your studies.

Adjustment factors are awarded in accordance with the approved schedules, and maximum adjustment no more than 10 adjustment factors (maximum 5 subject adjustments and maximum 5 equity adjustments) can be allocated.

You may be considered for adjustment factors if you have:

> applied through UAC for an eligible ANU Bachelor degree program
> undertaken Australian Year 12 or the International Baccalaureate
> achieved an ATAR or equivalent at or above 70
> not previously attempted tertiary study.

Subject adjustments

ANU Bachelor degree programs with a minimum requirement of 80.00-97.00 may receive up to five subject adjustments.

Senior secondary students do not need to apply for ANU subject adjustments. They are automatically added in accordance with the schedule. Students with AMEB Grade 8 or higher are required to apply separately to domestic.admissions@anu.edu.au with their certificate.

ANU Academic Adjustment Factors allocation under the National Access Scheme – Domestic and International Applicants

<table>
<thead>
<tr>
<th>Year 12 subject</th>
<th>Adjustment factors</th>
<th>Marks required for subject adjustments1</th>
<th>ACT2</th>
<th>NSW</th>
<th>QLD</th>
<th>SA/NT</th>
<th>TAS</th>
<th>VIC</th>
<th>WA</th>
<th>IB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>2</td>
<td>159 Band 5 VH B+ HA 35 67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Higher Level–5</td>
</tr>
<tr>
<td>English (except ESL)</td>
<td>5</td>
<td>159 Band 5 VH B+ HA 35 67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Higher Level–5</td>
</tr>
<tr>
<td>Languages (other than English)</td>
<td></td>
</tr>
<tr>
<td>Indigenous Studies</td>
<td></td>
</tr>
<tr>
<td>Specialist Mathematics Double Major</td>
<td>5</td>
<td>142 E3 H B- CA 30 58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Higher Level–5</td>
</tr>
<tr>
<td>Minor5</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>2</td>
<td>159 Band 5 VH B+ HA 35 67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Higher Level–5</td>
</tr>
<tr>
<td>Music AMEB Grade 84</td>
<td>5</td>
<td>Successful Completion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Scores listed in the table above reflect the minimum grade required for subject adjustments to be awarded.
2. All ACT subjects must be completed as a Major at minimum, unless specified otherwise. The ACT marks indicated in this schedule are the scaled marks received at the end of Year 12. Refer to the ACT Board of Senior Secondary Studies for information on scaling in the ACT: bsss.act.edu.au
3. NSW–Mathematics Extension 1 or 2; QLD–Mathematics; TAS–Mathematics I or II, Mathematics Stage 2 or 3, Calculus and Applications 1 A or 1 B; WA–Mathematics Specialist 3A or 3B or 3C or 3D, Calculus; IB Diploma–Further Maths (SL), Mathematics (HL)
4. Music AMEB Grade 8 must be completed at any time during or prior to your Year 11 and 12 studies to be eligible for adjustment factors.

NOTE: If you’re a music student with an Australian Music Examinations Board Grade 8 or higher, you will need to scan and send a copy of your certificate to domestic.admissions@anu.edu.au for assessment.

Disclaimer: The information on pages 40 and 41 are correct at time of printing, April 2018.

Adjustment factors are reviewed annually and for the most up-to-date information, please refer to anu.edu.au/study/apply or uac.edu.au/atar
Equity adjustments

ANU Bachelor degree programs with a cut-off requirement of 80.00-98.00 may receive up to five equity adjustments. You must refer to uac.edu.au/eas for more information on categories and how to apply.

Educational Access Scheme (Equity) Schedule Domestic Applicants

<table>
<thead>
<tr>
<th>EAS type</th>
<th>Equity adjustments</th>
<th>EAS category and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial hardship</td>
<td>Up to 5 F01A</td>
<td>Youth Allowance/Austudy/Abstudy</td>
</tr>
<tr>
<td></td>
<td>Up to 5 F01B</td>
<td>Other Centrelink income</td>
</tr>
<tr>
<td></td>
<td>Up to 2 F01C</td>
<td>Exceptional financial hardship</td>
</tr>
<tr>
<td></td>
<td>5 points F01D</td>
<td>Parental Family Tax Benefit Part A</td>
</tr>
<tr>
<td>Severe family disruption</td>
<td>Up to 5 F01A</td>
<td>Death of immediate family member/close friend</td>
</tr>
<tr>
<td></td>
<td>Up to 5 F01B</td>
<td>Life-threatening or severe illness of immediate family</td>
</tr>
<tr>
<td></td>
<td>Up to 5 F01C</td>
<td>Divorce or separation of parents or applicant</td>
</tr>
<tr>
<td></td>
<td>Up to 5 F01D</td>
<td>Legal matters</td>
</tr>
<tr>
<td>Excessive family responsibility</td>
<td>Up to 5 F03A</td>
<td>Care of children/other family members</td>
</tr>
<tr>
<td></td>
<td>Up to 5 F03B</td>
<td>Required to work to support family</td>
</tr>
<tr>
<td></td>
<td>Up to 3 F03C</td>
<td>Sole responsibility for care of self</td>
</tr>
<tr>
<td>Abuse</td>
<td>Up to 5 F04A</td>
<td>Abuse to applicant, parents, or siblings</td>
</tr>
<tr>
<td>English language difficulty</td>
<td>Up to 3 L01A</td>
<td>ESL/started school in Australia in Year 11 or 12</td>
</tr>
<tr>
<td>Personal illness/disability</td>
<td>Up to 5 P01A</td>
<td>Disability or long-term medical condition</td>
</tr>
<tr>
<td>Refugee status</td>
<td>5 points R01A</td>
<td>Refugee status</td>
</tr>
<tr>
<td>School environment</td>
<td>Up to 3 S01C</td>
<td>Rural school</td>
</tr>
<tr>
<td></td>
<td>Up to 5 S01D</td>
<td>Studying Year 12 subjects by distance education or Access program</td>
</tr>
<tr>
<td></td>
<td>5 points S01E</td>
<td>Disadvantaged school – low SES schools</td>
</tr>
</tbody>
</table>

For more information refer to uac.edu.au/eas

Elite athlete and performer adjustments

ANU is an Elite Athlete Friendly University. We will provide additional support if you are recognised as an elite athlete by the Australian Sports Commission’s AIS Personal Excellence program.

If you are an elite athlete or sporting coach, you may be eligible for five elite athlete and performer adjustments. Apply through UAC and submit an Elite Athlete and Performer Adjustment application form to the Office of Access and Inclusion at ANU.

Just fall short of the required minimum selection rank?

ANU offers a wide range if pathways for students that can assist with entry. Visit our website for more details on pathways.

> anu.edu.au/study/apply
Be a part of our residential community on campus.

Living on campus, you’ll form close bonds through shared experiences with your peers. You will become part of an important support network as you help each other through assessments, exam periods, and the ups and downs of university life.

ANU has ten different residences for undergraduate students. You can nominate a fully-catered, self-catered or apartment-style residence. All have laundry facilities, outdoor spaces and study rooms, and are within easy walking distance to shops, cafes, restaurants, sporting facilities, nightlife and public transport.

From 2019, two new halls will be operational. For more information go to anu.edu.au/study/accommodation.

Cost of living
In addition to accommodation costs, you will also have other costs to consider when moving out of home to study at university. It is a good idea to make a list of your expenses, for example: mobile phone and internet, textbooks and stationery, and transport and entertainment. Draw up a budget based on your circumstances to help you work out how much money you will need to live on while you are at university.

For more information go to anu.edu.au/students/program-administration/costs-fees/cost-of-living

Guide to ongoing weekly expenses
Allow about $400 AUD per week to cover food, transport, electricity, internet, telephone bills and entertainment.

ANU-recommended accommodation
If, due to various reasons, you’re unable to secure accommodation on campus, the ANU recommends the following accommodation options off campus:

> Weeden Lodge (self-catered with meal packages available)
> The Australian Institute of Sport residences (fully-catered)
> University of Canberra Village (self-catered)

All of these residences are located in the Canberra suburb of Belconnen, and are an easy bus ride to ANU. They provide pastoral support to all residents and any agreements entered into with these locations are between the student and the provider.

ANU Undergraduate Accommodation Guarantee
We guarantee accommodation to first-year interstate domestic students and international students who:
> receive and accept their offer to study at ANU within the advertised dates
> apply for accommodation before the closing date
> are in their first year of study at ANU, starting in their first semester, whether that is Semester one or two
> are enrolled full-time.

We also keep up to 50 residential places available for local students from the ACT region.

Application deadlines
Go to anu.edu.au/study/accommodation for up to date application deadlines.
2018 residential fees

<table>
<thead>
<tr>
<th>Residence/Hall/College/Lodge</th>
<th>Catering style</th>
<th>Weekly rent ($)</th>
<th>Registration fee ($) (once only)</th>
<th>Refundable deposit ($)</th>
<th>Residents' Committee fee ($) (per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Hall</td>
<td>Fully-catered*</td>
<td>from $401.56</td>
<td>$300.00</td>
<td>$1,000.00</td>
<td>$165.00</td>
</tr>
<tr>
<td>Burgmann College</td>
<td>Fully-catered*</td>
<td>from $412.00</td>
<td>$447.00</td>
<td>$1,000.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>John XXIII College</td>
<td>Fully-catered*</td>
<td>from $410.00</td>
<td>$415.00</td>
<td>$300.00</td>
<td>$300.00</td>
</tr>
<tr>
<td>Ursula Hall</td>
<td>Fully-catered*</td>
<td>from $385.87</td>
<td>$300.00</td>
<td>$1,000.00</td>
<td>$175.00</td>
</tr>
<tr>
<td>Burton & Garran Hall</td>
<td>Self-catered</td>
<td>from $220.44</td>
<td>$300.00</td>
<td>$1,000.00</td>
<td>$150.00</td>
</tr>
<tr>
<td>Fenner Hall</td>
<td>Self-catered</td>
<td>from $231.34</td>
<td>$300.00</td>
<td>$1,000.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Davey Lodge**</td>
<td>Apartment style</td>
<td>from $246.73</td>
<td>$300.00</td>
<td>Four weeks' rent</td>
<td>$100.00</td>
</tr>
<tr>
<td>Kinloch Lodge**</td>
<td>Apartment style</td>
<td>from $256.68</td>
<td>$300.00</td>
<td>Four weeks' rent</td>
<td>$100.00</td>
</tr>
<tr>
<td>Warrumbul Lodge**</td>
<td>Apartment style</td>
<td>from $231.15</td>
<td>$300.00</td>
<td>Four weeks' rent</td>
<td>$100.00</td>
</tr>
<tr>
<td>Lena Karmel Lodge**</td>
<td>Apartment style</td>
<td>from $236.14</td>
<td>$300.00</td>
<td>Four weeks' rent</td>
<td>$100.00</td>
</tr>
</tbody>
</table>

* 21 meals per week.
** Additional utilities/data charge of $29 per week included.

Please note:

Some halls, colleges and lodges charge extra for phone, internet connections and other services.

The fees listed in the table are for 2018 and subject to change. Go to anu.edu.au/study/accommodation for updates on current fees and any other costs involved. All figures in this table are in Australian dollars.

Dawn Leonardo

Bachelor of Engineering (Honours)/Commerce

“Moving from Brisbane at age 17, away from the comfort of my family and friends, was one of the biggest leaps I have taken in my life. But since commencing at ANU, I have met so many people who have been incredibly welcoming and supportive. I learnt to be more independent but also expanded my understanding of the world through each person I had the opportunity to meet (many who are now my closest friends). The continued support from my pastoral team, fellow students, as well as the countless opportunities to participate in extracurricular activities has helped to make my transition to university a very enriching experience. To my 17 year old self, ANU seemed incredibly far from my comfort zone, but my on campus accommodation has become a family that’s shaped me to be the person I am today and I am glad to call ANU my home-away from home.”
HOW TO APPLY

To apply, choose from our wide range of degrees according to your interests, strengths and career goals. Once you’ve decided on your preferred ANU degree, follow the steps below to apply.

1 Apply through UAC

> Submit your application through the Universities Admission Centre (UAC) at uac.edu.au. Applications open early August. Aim to get your application in by the last Friday in September to avoid late fees. You can change your preferences before each offer round.

2 Check entry requirements and choose preferences

> Check the entry requirements for each of your preferences to see if there are any additional selection criteria.

> Add preferences for similar degrees with lower entry requirements as your backup plan and check adjustment factors information. If you need advice about the order of your preferences, contact ANU on 02 6125 5594 or visit the UAC website at uac.edu.au.

> If you are not sure that you will get the selection rank you need, or you don’t have an assessable qualification, you can also check out our alternative entry pathways via ANU College.

Important dates for prospective students completing Year 12 in 2018

Semester 1, 2019

> Applications open at the start of August 2018

> Applications close at the end of September 2018*

* To avoid application fee increases, ensure you submit your application by the application closing dates. Processing fees return to normal mid-February for Semester 2 offers.

UAC applicants

Understanding preferences

When you apply through UAC, you are able to select up to five preferences as a domestic student. You can change the order of this list at any time until the last change of preference date before an offer round.

There are usually a few days after you have received your results to change your preferences if you need to. Put the degree you would most like to do first, then the degree you would next like to do if you don’t receive an offer to the first degree and so on. Applicants are considered in preference order and will be offered their first eligible preference only.

> uac.edu.au/undergraduate
The best way to get a feel for ANU is to come and experience it first-hand.

Open Day
Open day is the best way to experience life at ANU. Our accommodation, study and research, recreational and sporting facilities will all be on show for you to explore.
Academics, professional staff and students from across ANU will be on hand to speak with you in-person about your postgraduate study options.
Bring friends and family with you to discover our campus from 9am-4pm on the last Saturday in August.

Events
Find out about our online information sessions and events for students at cecs.anu.edu.au/events

Campus tours
Take a tour guided by a Student Ambassador who will share with you their experience at ANU while showing you around our beautiful campus.
Tours operate Monday to Friday 10am-5pm (excluding public holidays).
For more information anu.edu.au/campustours
To book campus.tours@anu.edu.au
Careers in engineering and computer science are diverse and as an ANU graduate, a wide range of opportunities are available to you.

Did you know?

5 star rating
Maximum ratings for student demand research intensity; research grants; staff qualifications and graduate starting salary.¹

$60K
Undergraduate average full-time starting salary.¹

83%
Full-time employed graduates say ‘qualification’ is important in their employment.⁵

58%
ANU Graduates employed full-time in the public sector.⁶

An ANU education in engineering or computing will prepare you to take on exciting careers in Australian and internationally.

Meet Our Alumni

Rebecca Watts

Analyst, Deloitte Australia
Bachelor of Engineering (Honours)/Bachelor of Commerce 2015

After applying her technical skills in an Engineers Without Borders Design Summit in Cambodia, Rebecca designed her honours thesis on building solar housing systems in remote communities. She then landed a 20-month position as a Project Facilitator and Technical Advisor in Cambodia, and changed the lives of the local community on a daily basis by providing them with lighting and electricity. Rebecca is now based in Sydney and is an Analyst at Deloitte Australia. In 2015 Rebecca was awarded ANU Student of the Year (Undergraduate).

Torben Sko

CTO, The Sam Prince Group
PhD 2013 / Bachelor of Software Engineering 2007

Torben is currently the Chief Technology Officer for the Sam Prince Group, a suite of companies that range from restaurants to a charity to an organisation that is redefining healthcare practice. Participating in a Hackathon during his studies opened doors for Torben when the Sam Prince Group went looking for someone to develop a 3D rendition of the human genome. This led to work with a number of companies within the Group and his current role that sits across the entire portfolio.
CONTACT US

ANU College of Engineering & Computer Science

Brian Anderson Building (115)
The Australian National University
Canberra ACT 2600 Australia

T +61 1800 620 032
W anu.edu.au/contact-anu
W cecs.anu.edu.au

ANU Social Media

facebook.com/anu.cecs
youtube.com/ANUexperience
twitter.com/anucecs
instagram.com/anu.cecs
i.youku.com/ANUexperience

CRICOS Provider Number 00120C