Design Guidelines for Training-based MIMO Systems with Feedback

Xiangyun (Sean) Zhou
Parastoo Sadeghi, Tharaka Lamahewa and Salman Durrani

Research School of Information Science and Engineering
The Australian National University (ANU)

February 2009, ANU
Overview

- Background:
 - MIMO systems
 - Training based transmission

- The design problems

- Information capacity

- Results
 - Non-feedback system
 - Channel gain feedback (CGF) system

- Conclusions
Background: MIMO Systems

\[y = Hx + n \]
Background: MIMO Systems

\[y = Hx + n \]
Background: MIMO Systems

- Non-feedback systems:
 - No information about the channel is available at TX.
Background: MIMO Systems

- Non-feedback systems:
 - No information about the channel is available at TX.

- Channel gain feedback (CGF) systems:
 - The estimated channel gains are known at the TX.
Background: Channel Model

- N_t transmit antennas and N_r receive antennas
- Channel is constant during one transmission block

$$y = Hx + n$$
Background: PSAM

- **Pilot-symbol-assisted modulation (PSAM):**
 - Insert pilots (known at the receiver) into data transmission to facilitate channel estimation at receiver.

\[
y = H x_p + n \xrightarrow{\text{guess}} \hat{H}
\]
Background: PSAM

- Pilot-symbol-assisted modulation (PSAM)

\[P = (1-\alpha)P + \alpha P \]

- \(\alpha = \text{PSAM power factor (fraction of power allocated to data)} \)
Background: PSAM

- Pilot-symbol-assisted modulation (PSAM)

$$P = (1-\alpha)P + \alpha P$$

<table>
<thead>
<tr>
<th>Pilot</th>
<th>Data</th>
<th>Pilot</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_p</td>
<td>L_d</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

- $\alpha = \text{PSAM power factor (fraction of power allocated to data)}$
- $L_p = \text{training length (amount of time allocated to pilots)}$
The Design Problems

- What is the optimal transmission design which maximizes the information capacity of the MIMO system?

- information capacity: the number of bits per second that can be transmitted.
A capacity lower bound per transmission block

\[\overline{C}_{LB} = \frac{L - L_p}{L} \mathbb{E}_{\hat{H}} \left\{ \log_2 \left| I_{N_t} + \left(\sigma_n^2 + \text{tr}\{R_{\hat{H}}Q\} \right)^{-1} \hat{H}^\dagger \hat{H}Q \right| \right\} \]

where \(Q = \mathbb{E}\{xx^\dagger\} \)

and \(R_{\hat{H}} = \mathbb{E}\{\hat{H}^\dagger \hat{H}\}/N_r = (R_H^{-1} + \frac{1}{\sigma_n^2} X_p X_p^\dagger)^{-1} \)

Is the lower bound accurate? Yes.

What are the design parameters?
Capacity Lower Bound

- A capacity lower bound per transmission block

\[
\overline{C}_{LB} = \frac{L - L_p}{L} E_{\hat{H}} \left\{ \log_2 \left| I_{N_t} + \left(\sigma_n^2 + \text{tr}\{ R_{\hat{H}} Q \} \right)^{-1} \hat{H}^\dagger \hat{H} Q \right| \right\}
\]

where \(Q = E\{xx^\dagger\} \)

and \(R_{\hat{H}} = E\{\hat{H}^\dagger \hat{H}\}/N_r = (R_H^{-1} + \frac{1}{\sigma_n^2} X_p X_p^\dagger)^{-1} \)

- Pilot parameters:
 - Spatial structure of pilot symbols, i.e., \(X_p \)
Capacity Lower Bound

A capacity lower bound per transmission block

$$\overline{C}_{LB} = \frac{L - L_p}{L} E_{\hat{H}} \left\{ \log_2 \left| I_{N_t} + \left(\sigma_n^2 + \text{tr} \{ R_{\tilde{H}} Q \} \right)^{-1} \hat{H}^\dagger \hat{H} Q \right| \right\}$$

where $Q = E\{xx^\dagger\}$

and $R_{\tilde{H}} = E\{\tilde{H}^\dagger \tilde{H}\}/N_r = (R_{\tilde{H}}^{-1} + \frac{1}{\sigma_n^2} X_p X_p^\dagger)^{-1}$

Pilot parameters:

- The number of pilot symbols or training length, i.e., L_p
Capacity Lower Bound

- A capacity lower bound per transmission block

\[
\bar{C}_{LB} = \frac{L - L_p}{L} E_{\hat{H}} \left\{ \log_2 \left| I_{N_t} + \left(\sigma_n^2 + \text{tr}\{R_{\tilde{H}}Q\} \right)^{-1} \hat{H}^\dagger \hat{H} Q \right| \right\}
\]

where \(Q = E\{xx^\dagger\} \)

and \(R_{\tilde{H}} = E\{\tilde{H}^\dagger \tilde{H}\}/N_r = (R_{\tilde{H}}^{-1} + \frac{1}{\sigma_n^2} X_p X_p^\dagger)^{-1} \)

- Pilot parameters:
 - Temporal power allocation to pilot and data, i.e., the PSAM power factor, \(\alpha \)
Capacity Lower Bound

- A capacity lower bound per transmission block

\[
\overline{C}_{LB} = \frac{L - L_p}{L} E_{\hat{H}} \left\{ \log_2 \left| I_{N_t} + \left(\sigma_n^2 + \text{tr}\{R_{\hat{H}}Q\} \right)^{-1} \hat{H}^\dagger \hat{H}Q \right| \right\}
\]

where \(Q = E\{xx^\dagger\} \)

and \(R_{\hat{H}} = E\{\hat{H}^\dagger \hat{H}\} / N_r = (R_{\hat{H}}^{-1} + \frac{1}{\sigma_n^2} X_p X_p^\dagger)^{-1} \)

- Data parameters:
 - Spatial correlation of data symbols \(Q \)
 - Power allocation for data transmission
The Design Parameters

- **Goal:** To maximize the information capacity.

- **Design parameters**
 - Pilot spatial structure, i.e., X_p
 - Data spatial structure, i.e., Q
 - PSAM power factor (power allocation to pilot and data), α
 - Training length, i.e., L_p

- Different design solutions for different systems:
 - Non-feedback and channel gain feedback.
The Design Parameters

- Goal: To maximize the information capacity.

- Design parameters
 - Pilot spatial structure, i.e., X_p
 - Data spatial structure, i.e., Q
 - PSAM power factor (power allocation to pilot and data), α
 - Training length, i.e., L_p

- Different design solutions for different systems:
 Non-feedback, and channel gain feedback.
The Design Parameters

- Goal: To maximize the information capacity.

- Design parameters
 - Pilot spatial structure, i.e., X_p
 - Data spatial structure, i.e., Q
 - PSAM power factor (power allocation to pilot and data), α
 - Training length, i.e., L_p

- Different design solutions for different systems:
 Non-feedback and channel gain feedback.
The Design Parameters

- **Goal**: To maximize the information capacity.

- **Design parameters**
 - Pilot spatial structure, i.e., X_p
 - Data spatial structure, i.e., Q
 - PSAM power factor (power allocation to pilot and data), α
 - Training length, i.e., L_p

- Different design solutions for different systems:
 - Non-feedback, and channel gain feedback.
The Design Parameters

- Goal: To maximize the information capacity. **Length**

<table>
<thead>
<tr>
<th>Pilot</th>
<th>Data</th>
</tr>
</thead>
</table>

- Design parameters
 - Pilot spatial structure, i.e., X_p
 - Data spatial structure, i.e., Q
 - PSAM power factor (power allocation to pilot and data), α
 - Training length, i.e., L_p

- Different design solutions for different systems:
 Non-feedback, and channel gain feedback.
Non-feedback System with Spatially i.i.d. Channels

Non-feedback Systems:

All 4 design parameters have closed-form solutions and can be found in the existing literature.
Channel Gain Feedback (CGF)
Systems with i.i.d. channels

- Does the optimal design for non-feedback systems still works well for channel gain feedback systems?
- What happens if there is a delay in the feedback?
- Design parameters: spatial structure of pilot and data, X_p and Q, PSAM power factor, α, training length, L_p.
Channel Gain Feedback (CGF)

Systems with i.i.d. channels

- Ideal case: no feedback delay

- Optimal pilot spatial structure: orthogonal with equal power, i.e.,
 \[X_p X_p^\dagger = \frac{P_p L_p}{N_t} I_{N_t} \]
Channel Gain Feedback (CGF) Systems with i.i.d. channels

- Ideal case: no feedback delay

- Optimal pilot spatial structure: orthogonal with equal power, i.e.,
 \[X_p X_p^\dagger = \frac{\mathcal{P}_p L_p}{N_t} I_{N_t} \]

- Optimal data transmission, \(Q \): water-filling according to \(\hat{H}^\dagger \hat{H} \)
Channel Gain Feedback (CGF) Systems with i.i.d. channels

- Ideal case: no feedback delay

- The optimal solutions for
 - PSAM power factor α^*, and,
 - training length L_p^*

 coincide with those for the non-feedback systems.

- It is good news: the same design is optimal for both non-feedback and feedback systems.
Channel Gain Feedback (CGF)

Systems with i.i.d. channels

- Practical case: with feedback delay
Channel Gain Feedback (CGF) Systems with i.i.d. channels

- Practical case: with feedback delay

| Pilot | Non-adaptive data sub-block | Adaptive data sub-block |
Channel Gain Feedback (CGF)
Systems with i.i.d. channels

- Practical case: with feedback delay

\[d = \beta L_d \]

- \(\beta \) is the feedback delay factor, \(\beta = d / L_d \)

Pilot

Non-adaptive data sub-block

Adaptive data sub-block

\[L_d \]

\[L_d - d \]
Channel Gain Feedback (CGF) Systems with i.i.d. channels

- Practical case: with feedback delay

- β is the feedback delay factor, $\beta = \frac{d}{L_d}$
- ϕ is the ratio of power allocated to the non-adaptive data sub-block.
Channel Gain Feedback (CGF) Systems with i.i.d. channels

- Practical case: with feedback delay

- We have an additional design parameter: temporal power division among the non-adaptive and the adaptive data sub-blocks, i.e., ϕ.

<table>
<thead>
<tr>
<th>Pilot</th>
<th>Non-adaptive data sub-block</th>
<th>Adaptive data sub-block</th>
</tr>
</thead>
</table>
Channel Gain Feedback (CGF) Systems with i.i.d. channels

- Practical case: with feedback delay

- We have an additional design parameter: temporal power division among the non-adaptive and the adaptive data sub-blocks, i.e., ϕ.

| Pilot | Non-adaptive data sub-block | Adaptive data sub-block |

- A sub-optimal solution: $\phi=\beta$, i.e., transmit equal power per data transmission.
Channel Gain Feedback (CGF)
Systems with i.i.d. channels

- Practical case: with feedback delay

- We have an additional design parameter: temporal power division among the non-adaptive and the adaptive data sub-blocks, i.e., ϕ.

A sub-optimal solution: $\phi = \beta$, i.e., transmit equal power per data transmission.
Capacity vs. SNR
showing optimality of using $\phi = \beta = 0.208$
Capacity vs. SNR showing optimality of using $\phi = \beta = 0.208$
Capacity vs. SNR showing optimality of using $\phi = \beta = 0.208$

Lines: use $\phi = \beta$

Markers: numerically search for the optimal ϕ
Channel Gain Feedback (CGF) Systems with i.i.d. channels

- Practical case: with feedback delay

- With $\phi=\beta$, the optimal solutions for
 - PSAM power factor α^*, and,
 - training length L_p^* coincide with those for the delayless systems.

- It is good news: the same design is optimal for both
 - delayless feedback systems, and
 - delayed feedback systems.
Conclusions

- We have studied the optimal training resource allocation in terms of
 - Power allocation, and
 - Time allocation
 between channel estimation and data transmission.

- We have found that
 - The optimal solution for non-feedback systems is still near optimal for channel gain feedback systems, and
 - The feedback delay has little effect on this optimal solution.
Thank you for your attention!
Q? or BBQ?