Fast and Accurate
Force and Motion Control of
Shape Memory Alloy (SMA) Actuators

Roy Featherstone and Yee Harn Teh
Dept. Systems Engineering, ANU
What is SMA?

an alloy which

1. has an \textit{austenite} crystal phase, which is stable at higher temperatures,

2. has a \textit{martensite} crystal phase, which is stable at lower temperatures, and

3. exhibits the \textit{shape memory effect}.

Austenite crystals are cubic: _

Martensite crystals are monoclinic: \\

or \\[opened_square]
The Shape Memory Effect

hot

cooling

cold

warming

deform
SMA Actuators

- Convert heat into mechanical work
- Are usually heated electrically
- Need an external force to stretch them
- Are made of straight or coiled SMA wire

SMA wires are easily stretched when cool

but recover their original shape when heated
Advantages
- mechanically simple
- large force outputs
- high force-to-weight ratio
- cheap
- clean
- silent
- spark-free
- easily miniaturized

Disadvantages
- inefficient
- slow
- hard to control

but we can fix these
Control Challenges:

- nonlinear
- hysteresis
- nonrepeatable
- hard to model
- limit cycles

antagonistic pairs help but we can model the high-frequency dynamics force feedback seems to solve this problem
Making SMA Faster

- our *rapid heating algorithm* allows faster electrical heating without risk of overheating
- doubles actuator velocity
Why Focus on Heating?

Excerpt from Flexinol (tm) data sheet:

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Current (mA)</th>
<th>Contraction Time (sec)</th>
<th>Off Time 70C</th>
<th>Off Time 90C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050</td>
<td>50</td>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>0.075</td>
<td>100</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>0.100</td>
<td>180</td>
<td>1</td>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

If we use the recommended safe heating currents then, for a thin wire, heating takes longer than cooling.
How it Works

1. measure SMA wire resistance

2. limit heating power to a value computed from the resistance
Tracking Response

- rapid heating off
- rapid heating on

Tracking response of SMA actuator

Output shaft angle (degrees)

Time (s)
Power to Each Actuator

- **rapid heating off**
- **rapid heating on**

![Graph showing heating power over time](image-url)