Prof Amanda Barnard FAIP FRSC

Senior Professor of Computational Science
BSc (Hons) PhD DSc
+61 2 6125 1458

Professor Amanda Barnard is one of Australia's most highly awarded computational scientists. She currently leads research at the interface of computational modeling, high performance supercomputing, and applied machine learning and artificial intelligence (AI).  She was awarded her BSc (Hons) in applied physics in 2000, and her PhD in theoretical condensed matter physics in 2003 from RMIT University.  After graduating she accepted a Distinguished Postdoctoral Fellow in the Center for Nanoscale Materials at Argonne National Laboratory (USA), and the prestigious senior research position as Violette & Samuel Glasstone Fellow at the University of Oxford (UK) with an Extraordinary Research Fellowship at The Queen’s College. Prior to joining ANU she was an ARC QEII Fellow, Office of the Chief Executive Science Leader, and then Chief Research Scientist in Data61 at CSIRO, between 2009 and 2020.

With more than 15 years experience in high performance computing and computational modeling, Prof Barnard is an advocate and champion for computational research in Australia and sits on boards for various institutions, including the Scientific Advisory Board for the Centre for Biomedical Data Visualisation (BioViS) at the Garvan Institute, the External Advisory Board for the Centre for Theoretical and Computational Molecular Science (CTCMS) at the Australian Institute for Bioengineering and Nanotechnology (AIBN) at the University of Queensland, the Advisory Board of the Our Health in Our Hands (OHIOH) Grand Challenge at ANU, and the external Advisory Board of ChoiceFlows Inc. Prof Barnard is a member of the Board of Directors for New Zealand eScience Infrastructure (NeSI), the Expert Panel for the CRP scheme of the National Research Foundation of Singapore, the Panel of Expert Advisors (Physical Sciences) for The Nature Index (NPG), the International Executive Board of Nano Futures (IOP), the Senior Advisory Board for the Journal of Physics: Materials (IOP) and the Editoral Advisory Board of Nanoscale (RSC).  She was formerly a Senior Associate Editor for Science Advances (AAAS) from 2014-2017, and the Chair of the Australian National Computational Merit Allocation Scheme (NCMAS) from 2018-2019, having served as Deputy Chair from 2016-2017, and as a committee member since 2012. Prof Barnard is currently the Chair of the Australasian Leadership Computing Grants (ALCG) scheme at the National Computational Infrastructure (NCI).

She has been recognised for leadership, including as a 2017 Woman of Achievement from the Black & White Foundation, as a Finalist for the 2015 Daily Life Women of the Year, and was named as one of the Top 10 Business Women in Australia by the Huffington Post in 2015. Her research has been awarded in five scientific disciplines, including the 2009 Young Scientist Prize in Computational Physics from the International Union of Pure and Applied Physics, the 2009 Mercedes Benz Environmental Research Award, the 2009 Malcolm McIntosh Award from the Prime Minister of Australia for the Physical Scientist of the Year, the 2010 Frederick White Prize from the Australian Academy of Sciences, the 2010 Distinguished Lecturer Award from the IEEE South Australia, the 2010 Eureka Prize for Scientific Research, the 2014 ACS Nano Lectureship (Asia/Pacific) from the American Chemical Society, the 2014 Feynman Prize in Nanotechnology (Theory) from the Foresight Institute, and the 2019 AMMA Medal from the Association of Molecular Modellers of Australasia.

More information can be found in the Student Projects tab, and at http://courses.cecs.anu.edu.au/courses/CSPROJECTS/, including a link to the Study Contract.

 

  • Applied machine learning and artificial intelligence
  • Data science and eResearch
  • Computational methods for the physical sciences, including theoretical development and simulation
  • Materials informatics and nanoinformatics
  • High performance computing

 

Journal Publications

  1. B. Motevalli, B. Sun, A.S. Barnard, Understanding and predicting the cause of defects in graphene oxide nanostructures using machine learning. J. Phys. Chem. C, 124 (2020) 7404 – 7413.
  2. G. Opletal, M. Golebiewski, A.S. Barnard, Simulated nanoparticle assembly using protoparticles (SNAP). J. Phys.: Mater. 3 (2020) 026001.
  3. S.L.Y. Chang, P. Reineck, D. Williams, G. Bryant, G. Opletal, S.A. El-Demrdash, P.L. Chiu, E. Osawa, A.S. Barnard, D. Dwyer, Dynamic self-assembly of detonation nanodiamond in water. Nanoscale 12, (2020) 5363 – 5367.
  4. T. Cox, B. Motevalli, G. Opletal, A.S. Barnard, Feature engineering of solid state crystalline lattices for machine learning. Adv. Theory Simul. 2 (2020) 1900190.
  5. B. Motevalli, A.J. Parker, B. Sun, A.S. Barnard, The representative structure of graphene oxide nanoflakes from machine learning. Nano Futures 3 (2019) 045001.
  6. A.S. Barnard, G. Opletal, Predicting structure/property relationships in multi-dimensional nanoparticle data using t-distributed stochastic neighbor embedding and machine learning. Nanoscale 11 (2019) 23165 – 23172.
  7. A.J. Parker, A.S. Barnard, Selecting appropriate clustering methods for materials science applications of machine learning. Adv. Theory Simul. 2 (2019) 1900145. [Cover]
  8. A.S. Barnard, B. Motevalli, A.J. Parker, J.M. Fisher, C.A. Feigl, G. Opletal, Nanoinformatics, and the big challenges for the science of small things. Nanoscale 11 (2019) 19190 – 19201.
  9. S.L.Y. Chang, D. Williams, M. Roldan Gutierrez, C. Dwyer, A. Barnard, Aggregation behavior of detonation nanodiamond in solution, Micros. Microanal. 25 (2019) 1740 – 1741
  10. A.S. Barnard, B. Motevalli, B. Sun, Identifying hidden high-dimensional structure/property relationships using self-organising maps. MRS Comm. 9 (2019) 730 – 736
  11. C.A. Feigl, B. Motevalli, A.J. Parker, B. Sun, A.S. Barnard, Classifying and predicting the electron affinity of diamond nanoparticles using machine learning. Nanoscale Horiz. 4 (2019) 983 – 990
  12. A.S. Barnard, G. Opletal, S.L.Y. Chang, Does twinning impact structure/property relationships in diamond nanoparticles? J. Phys. Chem. C, 123 (2019) 11207 – 11215
  13. B. Sun, A.S. Barnard, Visualising multi-dimensional structure/property relationships with machine learning. J. Phys.: Mater. 2 (2019) 034003
  14. G. Opletal, B. Sun, T.C. Petersen, S.P. Russo, A.S. Barnard, Vacancy induced formation of nanoporous silicon, carbon and silicon carbide. PhysChemChemPhys 21 (2019) 6517 – 6524
  15. B. Sun, H. Barron, G. Opletal, A.S. Barnard, From process to properties: Correlating synthesis conditions and structural disorder of platinum nanocatalysts. J. Phys. Chem. C 122 (2018) 28085 – 28093
  16. T. Yan, B. Sun, A.S. Barnard, Predicting archetypal nanoparticle shapes using a combination of thermodynamic theory and machine learning. Nanoscale 10 (2018) 21818 – 21826
  17. B. Sun, H. Barron, B. Wells, G. Opletal, A.S. Barnard, Correlating anisotropy and disorder with the surface structure of platinum nanoparticles. Nanoscale 10 (2018) 20393 – 20404
  18. G. Opletal, T.C. Petersen, S.P. Russo, A.S. Barnard, PorosityPlus: Characterisation of defective, nanoporous and amorphous materials. J. Phys.: Mater. 1 (2018) 016002
  19. B. Sun, A.S. Barnard, Texture based image classi_cation for nanoparticle surface characterisation and machine learning. J. Phys.: Mater. 1 (2018) 016001
  20. L. Gloag, T. Benedetti, S. Cheong, Y. Li, X.H. Chan, L-M. Lacroix, S.L.Y. Chang, R. Arenal, I. Florea, H. Barron, A.S. Barnard, A.M. Henning, C. Zhao, W. Schuhmann, J.J. Gooding, R.D. Tilley, Three-dimensional branched and faceted gold-ruthenium nanoparticles: Using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chemie Int. Ed. 6 (2018) 10241 – 10245
  21. E. Swann, B. Sun, D.M. Cleland, A.S. Barnard, Representing molecular and materials data for unsupervised machine learning. Molec. Simulat. 44 (2018) 905 – 920
  22. A.S. Barnard, Predicting the impact of structural diversity on the performance of nanodiamond drug carriers. Nanoscale 10 (2018) 8893 – 8910
  23. S.L.Y. Chang, C. Dwyer, E. Osawa, A.S. Barnard, Size dependent surface reconstruction in detonation nanodiamond. Nanoscale Horiz. 3 (2018) 213 – 217
  24. B. Sun, M. Fernandez, A.S. Barnard, Machine learning for silver nanoparticle electron transfer property prediction. J. Chem. Info. Mod. 57 (2017) 2413 – 2423
  25. M. Fernandez, H. Barron, A.S. Barnard, Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles. RSC Advances 7 (2017) 48962 – 48971
  26. B. Sun, A.S. Barnard, Impact of size and shape distributions on the electron charge transfer properties of silver nanoparticles. Nanoscale 9 (2017) 12698 – 12708
  27. M. Fernandez, A. Bilic, A.S. Barnard, Machine learning and genetic algorithm prediction of energy differences between electronic calculations of graphene nanoflakes. Nanotech. 28 (2017) 38LT03
  28. S.L.Y Chang, C. Dwyer, K. March, M. Mermoux, N. Nunn, O. Shenderova, E. Osawa, A.S. Barnard, Atomic and electronic structures of functionalized nanodiamond particles, Micros. Microanal. 23 (2017) 2270 – 2271
  29. E. Swann, M. Fernandez, M.L. Coote, A.S. Barnard, Bias-free chemically diverse test sets from machine learning. ACS Combi Sci. 19 (2017) 544 – 554
  30. G. Opletal, T.C. Petersen, A.S. Barnard, S.P. Russo, On reverse monte carlo constraints and model reproduction. J. Comp. Chem. 38 (2017) 1547 – 1551
  31. E. Swann, M.L. Coote, A.S. Barnard, M.C. Per, E_cient protocol for quantum Monte Carlo calculations of hydrogen abstraction barriers: Application to methanol. Int. J. Quant. Chem. 117 (2017) e25361
  32. H. Barron, G. Opletal, R.D. Tilley, A.S. Barnard, Predicting the role seed morphology in the evolution of anisotropic nanocatalysts. Nanoscale 9 (2017) 1502 – 1510
  33. M. Fernandez, H.F. Wilson, A.S. Barnard, Impact of distributions on the prediction of nanoparticle prototypes and archetypes. Nanoscale 9 (2017) 832 – 843
  34. A.S. Barnard, Heterogeneous PEGylation of diamond nanoparticles. Nanoscale 9 (2017) 70 – 74
  35. A.S. Barnard, E. Wei, L. Zadorin, J.J. Louviere, Using hypothetical product configurators to measure consumer preferences for nanoparticle size and concentration in sunscreens. Design Sci. 2 (2016) e12
  36. M. Fernandez, J.I. Abreu, H.Q. Shi, A.S. Barnard, Machine learning prediction of the energy gap of graphene nanoflakes using topological autocorrelation vectors. ACS Combi. Sci. 18 (2016) 661 – 664
  37. S.L.Y. Chang, A.S. Barnard, C. Dwyer, C.B. Boothroyd, E. Osawa, R.J. Nicholls, Surface and point defect measurements of detonation nanodiamond using combined Cs-Cc corrected TEM and ab initio calculations, Micros. Microanal. 22 (2016) 1392 – 1393
  38. L. Lai, A.S. Barnard, Tunable charge transfer on selectively functionalised diamond nanoparticles. Diamond & Relat. Mater. 68 (2016) 78 – 83
  39. B. Sun, A.S. Barnard, Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers. Nanoscale 8 (2016) 14264 – 14270
  40. M. Fernandez, M. Breedon, I.S. Cole, A.S. Barnard, Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternative using comparative molecular surface analysis (CoMSA), Chemosphere 160 (2016) 80 – 88
  41. S.L.Y. Chang, A.S. Barnard, C. Dwyer, C.B. Boothroyd, R. Hocking, E. Osawa, R.J. Nicholls, Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond. Nanoscale 19 (2016) 10548 – 10552
  42. C. Higgins, R.L. Nixon, A.S. Barnard, Nanotechnology in dermatology - New frontiers. Australasian J. Derma. 57 (2016) 28
  43. H.F. Wilson, C. Tang, A.S. Barnard, Morphology of zinc oxide nanoparticles and nanowires: role of surface and edge energies. J. Phys. Chem. C 120 (2016) 9498 – 9505
  44. M. Fernandez, A.S. Barnard, Geometrical properties can predict CO2 and N2 adsorption performance of metal-organic frameworks (MOFs) at low pressure. ACS Comb. Sci. 18 (2016) 243 – 252
  45. H.F. Wilson, A.S. Barnard, Water bilayers on ZnO(1010) surfaces: data-driven structural search. RSC Advances 6 (2016) 30928 – 30936
  46. L. Lai, A.S. Barnard, Site-dependent atomic and molecular affinities of hydrocarbons, amines and thiols on diamond nanoparticles. Nanoscale 8 (2016) 7899 – 7905 [Cover]
  47. M. Fernandez, H.Q. Shi, A.S. Barnard, Geometrical features can predict electronic properties of graphene nanoflakes. Carbon 103 (2016) 142 – 150
  48. M.R. Bassett, T. Morishita, H.F. Wilson, A.S. Barnard, M.J.S. Spencer, Phenol-modified silicene; preferred substitution site and electronic properties. J. Phys. Chem. C 120 (2016) 6762 – 6770 [Cover]
  49. B. Sun, M. Fernandez, A.S. Barnard, Statistics, damned statistics and nanoscience - Using data science to meet the challenge of nanomaterial complexity. Nanoscale Horiz. 1 (2016) 89 – 95 [Back Cover]
  50. M.C. Per, A.S. Barnard, I.K. Snook, High-throughput simulation of the configuration and ionization potential of nitrogen doped graphene. Molec. Simulat. 42 (2016) 458 – 462 [Cover]
  51. A.S. Barnard, Challenges in modelling nanoparticles for drug delivery. J. Phys.: Condens. Matter 28 (2016) 023002
  52. H. Barron, G. Opletal, R.D. Tilley, A.S. Barnard, Dynamic evolution of specific catalytic sites on Pt nanoparticles. Catal. Sci. Technol. 6 (2016) 144 – 151
  53. M. Fernandez, H.Q. Shi, A.S. Barnard, Quantitative structure-property relationship modeling of electronic properties of graphene using atomic radial distribution function scores. J. Chem. Info. Mod. 55, (2015) 2500 – 2506
  54. M. Fernandez, A.S. Barnard, Identification of nanoparticle prototypes and archetypes. ACS Nano 9 (2015) 11980 – 11992
  55. H.F. Wilson, A.S. Barnard, Thermodynamics of hydrogen adsorption and incorporation at the ZnO(1010) surface. J. Phys. Chem. C 119 (2015) 26560 – 26565
  56. C. Tang, H.F. Wilson, M.J.S. Spencer, A.S. Barnard, Catalytic potential of highly defective (211) surfaces of zinc blende ZnO. PhysChemChemPhys. 17 (2015) 27683 – 27689
  57. H. Barron, A.S. Barnard, Using structural diversity to tune the catalytic performance of Pt nanoparticle ensembles. Catal. Sci. Technol. 5 (2015) 2848 – 2855
  58. A.S. Barnard, H.F. Wilson, Optical emission of statistical distributions of silicon quantum dots. J. Phys. Chem. C, 119 (2015) 7969 – 7977
  59. A.S. Barnard, Materials Science - Nanoscale Locomotion without fuel. Nature 519 (2015) 37 – 38
  60. H.Q. Shi, R.J. Rees, M.C. Per, A.S. Barnard, Impact of distributions and mixtures on the charge transfer properties of graphene nanoflakes. Nanoscale, 7 (2015) 1864 – 1871
  61. L. Lai, A.S. Barnard, Functionalized nanodiamonds for biological and medical applications. J. Nanosci. Nanotech. 15, (2015) 989 – 999
  62. A.S. Barnard, Impact of distributions on the photocatalytic performance of anatase nanoparticle ensembles. J. Mater. Chem. A 3 (2015) 60 – 64 [Cover]
  63. L. Lai, A.S. Barnard, Tuning the electron transfer properties of entire nanodiamond ensembles. J. Phys. Chem. C, 118, (2014) 30209 – 30215
  64. H.F. Wilson, L. McKenzie-Sell, A.S. Barnard, Shape dependence of the band gaps in luminescent silicon quantum dots. J. Mater. Chem. C, 2 (2014) 9451 – 9456
  65. L. Lai, A.S. Barnard, Anisotropic adsorption and distribution of immobilized carboxyl on nanodiamond. Nanoscale, 6 (2014) 14185 – 14189
  66. A.S. Barnard, M.C. Per, Size and shape dependent deprotonation potential and proton affinity of nanodiamond. Nanotech. 25 (2014) 445702
  67. C. Tang, M.J.S. Spencer, A.S. Barnard, Activity of ZnO polar surfaces: An insight from surface energies. PhysChemChemPhys. 16 (2014) 22139 – 22144
  68. P. Chen, S.A. Seabrook, V.C. Epa, J. Newman, A.S. Barnard, D.A. Winkler, J.K. Kirby, P.C. Ke, The contrasting effects of nanoparticle binding on protein denaturation. J. Phys. Chem. C, 118 (2014) 22069 – 22078
  69. M. Breedon, M.C. Per, I. Cole, A.S. Barnard, Molecular ionization and deprotonation energies as indicators of functional coating performance. J. Mater. Chem. A, 2 (2014) 16660 – 16668
  70. H. F. Wilson, A.S. Barnard, Thermodynamic control of halogen-terminated silicon nanoparticle morphology. Cryst. Growth & Des. 14 (2014) 4468 – 4474
  71. A.S. Barnard, Clarifying stability, probability and population in nanoparticle ensembles. Nanoscale 8 (2014) 9983 – 9990 [Cover]
  72. A.S. Barnard, In silico Veritas. ACS Nano, 8 (2014) 6520 – 6525
  73. D.A. Winkler, M. Breedon, C. Chu, F. Burden, A.S. Barnard, Tim Harvey, I. Cole, Towards chromate-free corrosion inhibitors: structure-property models for organic alternatives. Green Chem. 16 (2014) 3349 – 3357
  74. A.L. Gonzalez, C. Noguez, J. Beranek, A.S. Barnard, Size, shape, stability and color of plasmonic silver nanoparticles. J. Phys. Chem. C 118 (2014) 9128 – 9136
  75. H.F. Wilson, A.S. Barnard, Predictive morphology control of hydrogen-terminated silicon nanoparticles. J. Phys. Chem. C 118 (2014) 2580 – 2586
  76. A.S. Barnard, Optimal vacancy concentrations to maximize the N-V yield in nanodiamonds. Mater. Horizons 1 (2014) 289 – 291
  77. A.S. Barnard, E. Osawa, The impact of structural polydispersivity on the surface electrostatic potential of nanodiamond. Nanoscale, 6 (2014) 1188 – 1194
  78. A.S. Barnard, Modelling the impact of alkanethiol SAMs on the morphology of gold nanocrystals. Cryst. Growth Des. 13 (2013) 5433 – 5441
  79. L.K. Randeniya, H.Q. Shi, A.S. Barnard, J. Fang, P.J. Martin, K. Ostrikov, Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small 9 (2013) 3993 – 3999
  80. H.Q. Shi, L. Lai, I.K. Snook, A.S. Barnard, Relative stability of graphene nano-flakes under environmentally relevant conditions. J. Phys. Chem. C 117 (2013) 15375 – 15382
  81. L. Lai, A.S. Barnard, Diamond nanoparticles as a new platform for the sequestration of waste carbon. PhysChemChemPhys. 15 (2013) 9156 – 9162
  82. A.L. Gonzalez, C. Noguez, A.S. Barnard, Mapping the structural and optical properties of anisotropic gold nanoparticles. J. Mater. Chem. C 1 (2013) 3150 – 3157
  83. H.Q. Shi, I.K. Snook, A.S. Barnard, Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes. PhysChemChemPhys. 15 (2013) 4897 – 4905 [Cover]
  84. A.S. Barnard, Modeling polydispersive ensembles of diamond nanoparticles. Nanotech. 24 (2013) 085703
  85. H. Guo, H.F. Xu, A.S. Barnard, Can hematite nanoparticles be an environmental indicator? Energy & Environ. Sci. 6 (2013) 561 – 569
  86. H. Guo, A.S. Barnard, Naturally occurring iron oxide nanoparticles: Morphology, materials chemistry and environmental stability. J. Mater Chem. A 1 (2013) 27 – 42 [Cover]
  87. A.S. Barnard, Direct comparison of kinetic and thermodynamic influences on gold nanomorphology. Acc. Chem. Res. 45 (2012) 1688 – 1697
  88. C.A. Feigl, S.P. Russo, A.S. Barnard, Modelling nanoscale cubic ZnS morphology and thermodynamic stability under sulphur-rich conditions. Cryst. Eng. Comm. 14 (2012) 7749 – 7758 [Cover]
  89. H.Q. Shi, A.S. Barnard, I.K. Snook, Quantum mechanical properties of graphene nano-flakes and quantum dots. Nanoscale 4 (2012) 6761 – 6767 [Cover]
  90. H. Guo, A.S. Barnard, Environmentally dependent stability of low-index hematite surfaces. J. Colloid. Int. Sci. 386 (2012) 315 – 324
  91. C.A. Feigl, S.P. Russo, A.S. Barnard, Modelling polar wurtzite ZnS nanoparticles: the effect of sulphur supersaturation on size- and shape-dependent phase transformations. J. Mater. Chem. 22 (2012) 18992 – 18998
  92. H.Q. Shi, A.S. Barnard, I.K. Snook, High throughput theory and simulation of nanomaterials: Exploring the stability and electronic properties of nanographene. J. Mater. Chem. 22 (2012) 18119 – 18123
  93. L. Lai, A.S. Barnard, Surface phase diagram and thermodynamic stability of functionalisation of nanodiamonds. J. Mater. Chem. 22 (2012) 16774 – 16780
  94. Y. Chen, Y. Zhang, D.J.S. Birch, A.S. Barnard, Creation and luminescence of size selected gold nanorods. Nanoscale 4 (2012) 5017 – 5022
  95. A.L. Gonzalez, C. Noguez, A.S. Barnard, Map of the structural and optical properties of gold nanoparticles at thermal equilibrium. J. Phys. Chem. C 116 (2012) 14170 – 14175
  96. A.S. Barnard, Modelling of the reactivity and stability of carbon nanotubes under environmentally relevant conditions. PhysChemChemPhys. 14 (2012) 10080 – 10093 [Cover]
  97. L. Lai, A.S. Barnard, Charge-induced restructuring and decomposition of bucky-diamonds. J. Mater. Chem. 22 (2012) 13141 – 13147
  98. C.A. Feigl, A.S. Barnard, S.P. Russo, Size- and shape-dependent phase transformations in wurtzite ZnS nanostructures. PhysChemChemPhys. 14 (2012) 9871 – 9879
  99. A.S. Barnard, Mapping the shape and phase of palladium nanocatalysts. Catal. Sci. Tech. 2 (2012) 1485 – 1492
  100. S.L.Y. Chang, A.S. Barnard, C. Dwyer, T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, M. Weyland, H. Konishi, H.F. Xu, Stability of porous platinum nanoparticles: combined in-situ TEM and theoretical study. J. Phys. Chem. Lett. 3 (2012) 1106 – 1110
  101. L. Lai, A.S. Barnard, Inter-particle interactions and self-assembly of functionalized nanodiamonds. J. Phys. Chem. Lett. 3 (2012) 896 – 901
  102. A.S. Barnard, I.K. Snook, Ripple induced changes in the wavefunction of graphene: An example of a fundamental symmetry breaking. Nanoscale, 4 (2012) 1167 – 1170 [Cover]
  103. L. Lai, A.S. Barnard, Nanodiamond for hydrogen storage: Temperature-dependent hydrogenation and charge-induced dehydrogenation. Nanoscale 4 (2012) 1130 – 1137105.
  104. H. Guo, A.S. Barnard, Surface phase diagram of hematite pseudocubes in hydrous environments. J. Mater. Chem. 22 (2012) 161 – 167
  105. H.Q. Shi, A.S. Barnard, I.K. Snook, Modelling the role of size, edge structure and terminations on the electronic properties of trigonal graphene nano-flakes. Nanotech. 23 (2012) 065707
  106. H. Guo, A.S. Barnard, Surface structure and environment-dependent hydroxylation of hematite (100) from density functional theory modeling. J. Phys. Chem. C 115 (2011) 23023 – 23029
  107. A.S. Barnard, H. Konishi, H. Xu, Morphology mapping of platinum catalysts over the entire nanoscale. Catal. Sci. Technol. 1 (2011) 1440 – 1488
  108. H. Guo, A.S. Barnard, Proton transfer in the hydrogen-bond chains of lepidocrocite: A computational study. PhysChemChemPhys. 13 (2011) 17864 – 17869
  109. A.S. Barnard, Y. Chen, Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles. J. Mater. Chem. 21 (2011) 12239 – 12245 [Cover]
  110. A.S. Barnard, I.K. Snook, Modelling the role of size, edge structure and terminations on the electronic properties of graphene nano-flakes. Model. Simulat. Mater. Sci. Eng. 19 (2011) 054001
  111. L. Lai, A.S. Barnard, Modeling the atomic structure and thermostability of oxygen, hydroxyl, and water functionalization of nanodiamonds. Nanoscale, 3 (2011) 2566 – 2575
  112. H. Guo, A.S. Barnard, Thermodynamic modelling of nanomorphologies of hematite and goethite. J. Mater. Chem. 21 (2011) 11566 – 11577
  113. I.K. Snook, A.S. Barnard, Theory, experiment and applications of graphene nano-flakes. J. Nanosci. Lett. 1 (2011) 50 – 60 [Cover of Inaugural Issue]
  114. L. Lai, A.S. Barnard, Stability of nanodiamond exposed to N, NH and NH2. J. Phys. Chem. C, 115 (2011) 6218 – 6228
  115. A. Adnan, R. Lam, C. Hanning, J. Lee, D. J. Schaffer, A.S. Barnard, G. C. Schatz, D. Ho, W. K. Liu, Atomistic Simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carriers. Mol. Pharmaceutics, 8 (2011) 368 – 374
  116. C.A. Feigl, A.S. Barnard, S.P. Russo, Comparative density functional theory investigation of the mechanical and energetic properties of ZnS. Molec. Simulat. 37 (2011) 321
  117. H. Guo, A.S. Barnard, Computational challenges in accurate modeling of iron oxides and oxyhydroxides, and the prediction of environmentally sensitive phase transformations. Phys. Rev. B. 83 (2011) 094112 – 094130
  118. L.Y. Chang, E. Osawa, A.S. Barnard, Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale, 3 (2011) 958 – 962
  119. A.S. Barnard, I.K. Snook, Ideality versus reality: Predicting the effect of realistic environments on the electronic properties of nanographene. Nanosci. Nanotech. Lett. 3 (2011) 59 – 62
  120. A.S. Barnard, Mapping the photocatalytic activity or potential free radical toxicity of nanoscale titania. Energy & Environ. Sci. 4 (2011) 439 – 443 [Cover]
  121. A.S. Barnard, L.Y. Chang, Thermodynamic cartography and structure/property mapping of commercial platinum catalysts. ACS Catalysis, 1 (2011) 76 – 81
  122. A.S. Seyed-Razavi, I.K. Snook, A.S. Barnard, Surface area limited model for predicting anisotropic coarsening of facetted nanoparticles. Cryst. Growth & Des. 11 (2011) 158 – 165
  123. A.S. Barnard, Useful equations for modeling the relative stability of common nanoparticle morphologies. Comp. Phys. Comm. 182 (2011) 11 – 13
  124. A.S. Barnard, I.K. Snook, Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 20 (2010) 10459 – 10464
  125. A.S. Barnard, C.A. Feigl, S.P. Russo, Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles. Nanoscale, 2 (2010) 2294 – 2301
  126. L.Y. Chang, A.S. Barnard, L.C. Gontard, R. Dunin-Borkowski, Resolving the structure of active sites on platinum catalytic nanoparticles. Nano Lett. 10 (2010) 3073 – 3076
  127. A.S. Barnard, Modelling of nanoparticles: Approaches to morphology and evolution. Rep. Prog. Phys. 73 (2010) 086502
  128. C.A. Feigl, S.P. Russo, A.S. Barnard, Safe, stable and effective nanotechnology: Phase mapping of zinc sulfide nanoparticles. J. Mater. Chem. 20 (2010) 4971 – 4980
  129. C. Bradac, T. Gaebel, N.N. Naidoo, M.J. Sellars, J. Twamley, L. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5 (2010) 345 – 349
  130. A.S. Barnard, One-to-One comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat. Nanotechnol. 5 (2010) 271 – 274
  131. A.S. Barnard, I.K. Snook, Transformation of graphene into graphane in the absence of hydrogen. Carbon 48 (2010) 981 – 986
  132. A.S. Seyed-Razavi, I.K. Snook, A.S. Barnard, Origin of Nanomorphology: Does a complete theory of nanoparticle evolution exist? J. Mater. Chem. 20 (2010) 416 [Cover]
  133. A.S. Barnard, Shape-dependent confinement of the nanodiamond band-gap. Cryst. Growth & Des. 5 (2009) 4860 – 4863
  134. C. Bradac, T. Gaebel, N. Naidoo, J.R. Rabeau, A.S. Barnard, Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Lett. 9 (2009) 3555 – 3564
  135. A.S. Barnard, Computational strategies for predicting the risks associated with nanotechnology. Nanoscale 1, (2009) 89 – 95
  136. A.S. Barnard, Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134 (2009) 1751 – 1764 [Cover]
  137. A.S. Barnard, Partnerships for sustainable nanotechnology. Materials Today 12 (2009) 47 [Cover]
  138. A.S. Barnard, N. Young, A.I. Kirkland, M.A. van Huis, H. Xu, Nanogold: A quantitative phase map. ACS Nano 3 (2009) 1431 – 1436
  139. A.S. Barnard, S.P Russo, Modeling nanoscale FeS2 formation in sulphur rich conditions. J. Mater. Chem. 19 (2009) 3389 – 3394
  140. A.S. Barnard, How can ab initio simulations address risks in nanotech? Nat. Nanotechnol. 4 (2009) 332 – 335
  141. A.S. Barnard, S.P Russo, Morphological stability of pyrite FeS2 nanocrystals in water. J. Phys. Chem. C, 113 (2009) 5376
  142. A.S. Barnard, Modelling the relative stability of carbon nanotubes exposed to environmental adsorbates and air. J. Phys: Condens. Matter, 21 (2009) 144205
  143. J.E. Hales, A.S. Barnard, Thermodynamic stability and electronic structure of small carbon nitride nanotubes. J. Phys: Condens. Matter, 21 (2009) 144203
  144. A.S. Barnard, S.P Russo, Modeling the environmental stability of FeS2 nanorods, using lessons from biomineralization, Nanotech. 20 (2009) 115702
  145. A.S. Barnard, I.I. Vlasov, V.G. Ralchenko, Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers. J. Mater. Chem. 19 (2009) 360
  146. I.I. Vlasov, A.S. Barnard, V.G. Ralchenko, O.I. Lebedev, M.V. Kanzuba, A.V. Saveliev, V.I. Konov, E. Goovaerts, Nanodiamond photo emitters based on strong luminescence from silicon-vacancy defects. Adv. Mater. 21 (2008) 808
  147. A.S. Barnard, H. Xu, An environmentally sensitive phase map of titania nanocrystals. ACS Nano 2 (2008) 2237 – 2242
  148. A.S. Barnard, M. Sternberg, Vacancy induced structural changes in diamond nanoparticles. J. Comput. Theo. Nanosci. 5 (2008) 2089
  149. A.S. Barnard, G. Opletal, I.K. Snook, S.P. Russo, Ideality versus reality: The emergence of the Chui-icosahedron. J. Phys. Chem. C, 112 (2008) 14848
  150. A.S. Barnard, Self-assembly in nanodiamond agglutinates. J. Mater. Chem. 18 (2008) 4038 – 4041
  151. A.S. Barnard, A.I. Kirkland, Combining theory and experiment in determining the surface chemistry of nanocrystals. Chem. Mater. 20 (2008) 5460
  152. A. Fiori, S. Orlanducci, V. Sessa, E. Tamburri, F. Toschi, M.L. Terranova, A. Ciorba, M Rossi, M. Lucci, A.S. Barnard, Hybrid carbon nanotube/nanodiamond structures as electron emitters for cold cathodes. J. Nanosci. Nanotech. 8, (2008) 1989
  153. A.S. Barnard, I.K. Snook, Thermal stability of graphene edge structure and graphene nanoflakes. J. Chem. Phys. 128 (2008) 094707
  154. A.S. Barnard, Modelling the shape, orientation and stability of twinned gold nanorods. J. Phys. Chem. C 112 (2008) 1385
  155. A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics in diamond nanoparticles. J. Mater. Chem. 17 (2007) 4811 – 4819
  156. A.S. Barnard, H. Xu, First principles and thermodynamic modeling of CdS surfaces and nanorods. J. Phys. Chem. C, 111 (2007) 18112
  157. A.S. Barnard, M. Sternberg, Can we predict the location of impurities in diamond nanoparticles? Diamond Relat. Mater. 16 (2007) 2078
  158. A.S. Barnard, S.P. Russo, Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods. J. Phys. Chem. C, 111 (2007) 11742
  159. A.S. Barnard, L.A. Curtiss, Modeling the preferred shape, orientation and aspect of gold nanorods. J. Mater. Chem. 17 (2007) 3315
  160. A.S. Barnard, I.K. Snook, S.P. Russo, Bonding and structure of BxNy armchair nanotubes (x,y = 1,2). J. Mater. Chem. 17 (2007) 2892
  161. H.J. Fan, A.S. Barnard, M. Zacharias, ZnO nanowires and nanobelts: shape selection and thermodynamic modeling. Appl. Phys. Lett. 90 (2007) 143116
  162. A.S. Barnard, M. Sternberg, Mapping the location of nitrogen in diamond nanoparticles. Nanotech. 18, (2007) 025702
  163. A.S. Barnard, A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B, 110 (2006) 24498 – 24504
  164. A.S. Barnard, H. Xu, X. Li, N. Pradham, X. Peng, Modeling the formation of high aspect CdSe quantum wires: Axial-growth versus oriented-attachment mechanisms. Nanotech. 17 (2006) 5707
  165. A.S. Barnard, M. Sternberg, Substitutional boron in nanodiamond, bucky-diamond and nanocrystalline diamond grain boundaries. J. Phys. Chem. B, 110 (2006) 19307
  166. A.S. Barnard, L.A. Curtiss, Predicting the shape and structure of face centered cubic gold nanocrystals smaller than 3 nm. ChemPhysChem, 7 (2006) 1544
  167. A.S. Barnard, R.R. Yeredla, H. Xu, Modelling the effect of particle shape on the phase stability of ZrO2 nanoparticles. Nanotech. 17 (2006) 3039
  168. A.S. Barnard, Thermodynamic modeling of hydrogen adsorption on carbon nanotubes during CVD growth. Chem. Vapour Depos. 12 (2006) 388
  169. A.S. Barnard, S. Erdin, Y. Lin, P. Zapol, W. Halley, Modeling the structure and electronic properties of TiO2 nanoparticles. Phys. Rev. B, 73 (2006) 205405
  170. A.S. Barnard, Nano-hazards: Knowledge is our first defence. Nat. Mater. 5 (2006) 245 – 248
  171. A.S. Barnard, Theory and modeling of nanocarbon phase stability. Diamond & Relat. Mater. 15 (2006) 285
  172. A.S. Barnard, Using theory and modelling to investigate shape at the nanoscale. J. Mater. Chem. 16 (2006) 813 [Cover]
  173. A.S. Barnard, Y. Xiao, Z. Cai, Modelling the shape and orientation of ZnO nanobelts. Chem. Phys. Lett. 419 (2006) 313
  174. A.S. Barnard, X.M. Lin, L.A. Curtiss, Equilibrium morphology of face centered cubic gold nanoparticles >3 nm, and the shape changes induced by temperature. J. Phys. Chem. B 109 (2005) 24465
  175. A.S. Barnard, M. Sternberg, Substitutional nitrogen in nanodiamond and bucky-diamond particles. J. Phys. Chem. B, 109 (2005) 17107
  176. A.S. Barnard, Z. Saponjic, D. Tiede, T. Rajh, L.A. Curtiss, Multi-scale modeling of titanium dioxide: Controlling shape with surface chemistry. Rev. Adv. Mater. Sci. 10 (2005) 21 – 27
  177. A.S. Barnard, L.A. Curtiss, Computational nano-morphology: Modeling shape as well as size. Rev. Adv. Mater. Sci. 10 (2005) 105 – 109
  178. A.S. Barnard, S.P. Russo, I.K. Snook, Simulation and bonding of dopants in nanocrystalline diamond. J. Nanosci. Nanotech. 5 (2005) 1395 – 1407
  179. A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in quasi-zero dimensional nanocarbon systems. J. Comput. Theo. Nanosci. 2 (2005) 180 – 201 [Cover]
  180. A.S. Barnard, L.A. Curtiss, Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5 (2005) 1261 – 1266
  181. M.L. Terranova, S. Orlanducci, A. Fiori, E. Tamburri, V. Sessa, M. Rossi, A.S. Barnard, Controlled evolution of carbon nanotubes coated by nanodiamond: The realization of a new class of hybrid nanomaterials. Chem. Mater. 17 (2005) 3214
  182. A.S. Barnard, S.P. Russo, I.K. Snook, First principles modelling of dopants in C29 and C29H24 nanodiamond. J. Phys. Chem. B 109 (2005) 11991
  183. A.S. Barnard, P. Zapol, L.A. Curtiss, Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions. Surf. Sci. 582 (2005) 173 – 188
  184. S.H.N Lim, D.G. McCulloch, M.M.M. Bilek, D.R. McKenzie, S.P. Russo, A.S. Barnard, A. Torpy, Characterisation of cathodic arc deposited titanium aluminium nitride films prepared using plasma immersion ion implantation. J. Phys: Condensed. Matter 17, (2005) 2791
  185. I.K. Snook, A.S. Barnard, S.P. Russo, R. Springall, and J. Srbinovsky, Simulating nano-carbon materials. Molec. Simulat. 31, (2005) 495
  186. Z.V. Saponjic, N. Dimitrijevic, D. Tiede, A. Goshe, X. Zuo, L. Chen, A.S. Barnard, P. Zapol, L.A. Curtiss, T. Rajh, Shaping nanoscale architecture through surface chemistry. Adv. Mater. 17, (2005) 965
  187. A.S. Barnard, S.P. Russo, I.K. Snook, Visualization of hybridization in nanocarbon systems. J. Comput. Theo. Nanosci. 2, (2005) 68
  188. A.S. Barnard, M.L. Terranova, M. Rossi, Density functional study of H-induced defects as nucleation sites in hybrid carbon nanomaterials. Chem. Mater. 8, (2005) 527
  189. A.S. Barnard, P. Zapol, L.A. Curtiss, Modeling the morphology and phase stability of TiO2 nanocrystals in water. J. Chem. Theo. Comp. 1 (2005) 107
  190. A.S. Barnard, Shape and energetics of TiN nanoparticles. J. Comput. Theo. Nanosci. 1 (2004) 334
  191. A.S. Barnard, P. Zapol, Predicting the energetics, phase stability and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B, 108 (2004) 18435 – 18440
  192. A.S. Barnard, P. Zapol, Effects of particle morphology and surface hydrogenation on the phase stability TiO2 at the nanoscale. Phys. Rev. B, 70 (2004) 235403
  193. A.S. Barnard, P. Zapol, A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121 (2004) 4276 – 4283
  194. A.S. Barnard, Structural properties of diamond nanowires: Theoretical predications and experimental progress. Rev. Adv. Mater. Sci. 6 (2004) 94 – 119
  195. A.S. Barnard, P. Bath, S.P. Russo, I.K. Snook, A Monte Carlo study of surface reconstruction in (100) and (111) diamond surfaces and nanodiamond. Molec. Simulat. 30, (2004) 1
  196. A.S. Barnard, I.K. Snook, Phase stability of nanocarbon in one-dimension: Nanotubes versus diamond nanowires. J. Chem. Phys. 120 (2004) 3817
  197. A.S. Barnard, S.P. Russo, I.K. Snook, Bucky-wires and the instability of the diamond (111) surface in one-dimension. J. Nanosci. Nanotech. 2 (2004) 151
  198. A.S. Barnard, S.P. Russo, I.K. Snook, From nanodiamond to diamond nanowires: Structural properties affected by dimension. Phil. Mag. 84 (2004) 899
  199. A.S. Barnard, S.P. Russo, I.K. Snook, Structural relaxation and relative stability of nanodiamond morphologies. Diamond & Relat. Mater. 12 (2004) 1867
  200. A.S. Barnard, S.P. Russo, I.K. Snook, Electronic band gaps for diamond nanowires. Phys. Rev. B, 68 (2003) 235407
  201. A.S. Barnard, S.P. Russo, I.K. Snook, First principles investigations of diamond ultrananocrystals. Int. J. Mod. Phys. B, 17 (2003) 3865
  202. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of diamond nanowire structures. Nano Lett. 3 (2003) 1323 [Cover]
  203. A.S. Barnard, S.P. Russo, I.K. Snook, Coexistence of bucky-diamond with the nanodiamond and fullerene phases. Phys. Rev. B, 68 (2003) 73406
  204. A.S. Barnard, S.P. Russo, Structure and energetics of single-walled armchair and zigzag silicon nanotubes. J. Phys. Chem. B, 107 (2003) 7577
  205. A.S. Barnard, S.P. Russo, I.K. Snook, Surface structure of cubic diamond nanowires. Surf. Sci. 538 (2003) 204
  206. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of B and N in C29 and C29H24 nanodiamond. J. Chem. Phys. 118, (2003) 10725
  207. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of dopants in diamond nanowires: II. Phil. Mag. 83 (2003) 2311
  208. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of boron and nitrogen in diamond nanowires. Phil. Mag. 83 (2003) 2301
  209. A.S. Barnard, S.P. Russo, I.K. Snook, Size dependent phase stability of carbon nanoparticles: Nanodiamond versus fullerenes. J. Chem. Phys. 118 (2003) 5094
  210. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of band states in doped diamond. Phil. Mag. 83, (2003) 1163
  211. S.P. Russo, A.S. Barnard, I.K. Snook, Hydrogenation of nanodiamond surfaces: Structure and effects on crystalline stability. Surf. Rev. Lett. 10 (2003) 233
  212. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modelling of stability of nanodiamond morphologies. Phil. Mag. Lett. 83 (2003) 39 – 45
  213. A.S. Barnard, S.P. Russo, I.K. Snook, Comparative Hartree-Fock and density functional theory study of cubic and hexagonal diamond. Phil. Mag. B, 82 (2002) 1767
  214. A.S. Barnard, S.P. Russo, Development of an improved Stillinger-Weber potential for tetrahedral carbon using ab initio (Hartree-Fock and MP2) methods. Mol. Phys. 100 (2002) 1517
  215. A.S. Barnard, S.P. Russo, G.I. Leach, Nearest neighbour considerations in Stillinger-Weber type potentials for diamond. Molec. Simulat. 28 (2002) 761

Books & Book Chapters

  1. H. Guo, A.S. Barnard, Thermodynamics of Iron Oxides and Oxyhydroxides in Different Environments, in: Iron Oxides: From Nature to Applications, Third Edition, D. Faivre (Ed.), John Wiley & Sons Ltd, UK (2016)
  2. L. Lai, A.S. Barnard, Molecular and analytical modeling of nanodiamond for drug delivery applications, in: Computational Pharmaceutics: Application of Molecular Modeling in Drug Delivery, D. Ouyang and S.C. Smith (Eds.), John Wiley & Sons Ltd, UK (2015)
  3. A.S. Barnard, Distribution, Diffusion and Concentration of Defects in Colloidal Diamond, in: Nanodiamond, O. A. Williams (Eds.), Royal Society Chemistry, UK (2014)
  4. A.S. Barnard, Thermodynamic Cartography and Structure/Property Mapping of Potential Nanohazards, in: Towards Efficient Designing of Safe Nanomaterials, J. Leszczynski, T. Puzyn (Eds.), Royal Society Chemistry, UK (2012)
  5. A.S. Barnard, Stability of Diamond at the Nanoscale, Chapter 1, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, Second Edition, D.M. Gruen, O.A. Shenderova (Eds.), Elsevier, UK (2012)
  6. A.S. Barnard, Modelling Gas Adsorption on Carbon Nanotubes, in: Carbon Nanostructure for Gas Adsorption, M.L. Terranova and M. Rossi (Eds.), Pan Stanford Publishing Inc., Singapore (2012)
  7. A.S. Barnard, Modeling Nanomorphology in Noble Metal Nanoparticles: Thermodynamic Cartography, in: Complex-Shaped Metal Nanostructures, T. K. Sau and A. Rogach (Eds.), Wiley – VCH, Germany (2011)
  8. Natures Nanostructures, H. Guo and A.S. Barnard, (Eds.) Pan Stanford Publishing Inc., Singapore (2011)
  9. I.K. Snook, A.S. Barnard, Graphene Nano-Flakes and Nano-Dots: Theory, Experiment and Applications, Chapter 13 in: Physics and Applications of Graphene - Theory, S. Mikhailov (Ed.) InTech, Croatia (2011)
  10. A.S. Barnard, Scientific Strategies for Predicting Risks and Hazards Associated with Nanomaterials, in: Advances in Nanotechnology, F. Columbus (Ed.) Nova Science Publishers, USA (2010)
  11. W. K. Liu, A. Adnan, A. Kopacz, M. Hallikainen, D. Ho, R. Lam, J.Lee, T. Belytschko, G. Schatz, Y. Tzeng, Y.-J. Kim, S. Baik, M. K. Kim, T. Kim, J. Lee, E.-S. Hwang, S. Im, E. Osawa, A.S. Barnard, H.-C. Chang, C.-C. Chang, Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications, in: Nanodiamonds: Applications in Biology and Nanoscale Medicine, D. Ho (Ed.), Springer Science+Business Media. Inc. USA (2010)
  12. A.S. Barnard, Size dependent phase transitions and phase reversal at the nanoscale, Chapter 5, in: Oxford Handbook of Nanotechnology: Volume II, A. Narlikar, and Y.Y. Fu (Eds.), Oxford University Press, UK (2009) pp. 213 – 231
  13. O.A. Shenderova, A.S. Barnard and D.M. Gruen, Carbon Family at the Nanoscale, Chapter 1, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, D.M. Gruen, O.A. Shenderova (Eds.), William Andrew Publishing (2005)
  14. A.S. Barnard, Stability of Nanodiamond, Part 2, in: Ultrananocrystalline Diamond: Synthesis, Properties and Applications, D.M. Gruen, O.A. Shenderova (Eds.), William Andrew Publishing (2005)
  15. A.S. Barnard, From Nanodiamond to Nanowires, Chapter 3, in: Proceedings of the NATO/OTAN Advanced Research Workshop on Ultrananocrystalline Diamond, D.M. Gruen, O.A. Shenderova and A.Ya. Vul (Eds.), Kluwer (2005)
  16. A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of Stability and Phase Transformations in Zero- and One-Dimensional Nanocarbon Systems, Chapter 36, in: Handbook of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers (Eds.), American Scientific Publishers (2005)

Published Datasets

  1. A. Barnard, B. Motevalli Soumehsaraei, B. Sun, 2019, Periodic Graphene Oxide Data Set. v1. CSIRO. Data Collection. https://doi.org/10.25919/5e30b45f9852c
  2. A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Neutral Graphene Oxide Data Set. v1. CSIRO. Data Collection. https://doi.org/10.25919/5e30b44a7c948
  3. A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Anionic Graphene Oxide Data Set. v1. CSIRO. Data Collection. https://doi.org/10.25919/5e30a9cf118cf
  4. A. Barnard, B. Motevalli Soumehsaraei, B. Sun, L. Lai, 2019, Cationic Graphene Oxide Data Set. v1. CSIRO. Data Collection. https://doi.org/10.25919/5e30a9cf90439
  5. A. Barnard, G. Opletal, 2019, Copper Nanoparticle Data Set. v1. CSIRO. Data Collection. https://doi.org/10.25919/5e30ba386311f
  6. A. Barnard, G. Opletal, 2019, Ruthenium Nanoparticle Data Set. v1. CSIRO. Data Collection. https://doi.org/10.25919/5e30b8fa67484
  7. A. Barnard, G. Opletal, 2019, Disordered Silver Nanoparticle Data Set. v1. CSIRO. Data Collection. https://doi.org/10.25919/5e30b5231c669
  8. A. Barnard, G. Opletal, 2019, Nickel Nanoparticle Data Set. v1. CSIRO. Data Collection. https://doi.org/10.25919/5e30b73382a79
  9. A. Barnard, G. Opletal, 2019, Gold Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5d395ef9a4291
  10. A. Barnard, G. Opletal, 2019, Palladium Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5d3958ee6f239
  11. A. Barnard, G. Opletal, 2019, Platinum Nanoparticle Data Set, v1. CSIRO Data Collection. https://doi.org/10.25919/5d3958d9bf5f7
  12. A. Barnard, B. Motevalli Soumehsaraei, 2019, Graphene Oxide Nanoake Archetypes and Prototypes, v1. CSIRO Data Collection. https://doi.org/10.25919/5d1304152364a
  13. A. Barnard, 2018, Twinned Nanodiamond Data Set, v1. CSIRO Data Collection, https://doi.org/10.25919/5ba82cf09627f
  14. A. Barnard, 2018, Graphene Oxide Structure Set, v1. CSIRO Data Collection, https://doi.org/10.25919/5b91c8b150944
  15. A. Barnard, B. Sun, B. Motevalli Soumehsaraei, G. Opletal, 2017, Silver Nanoparticle Data Set, v3. CSIRO Data Collection, https://doi.org/10.25919/5d22d20bc543e
  16. A. Barnard, B. Sun, B. Motevalli, G. Opletal, 2017, Silver Nanoparticle Structure Set, v3. CSIRO Data Collection,https://doi.org/10.25919/5d22d20bc543e
  17. E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsC-org Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf3005e549
  18. E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsC-1 Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf1565950a
  19. E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsT-org Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf2cf53bbe
  20. E. Swann, M. Fernandez Llamosa, A. Barnard, M. Coote, 2017, CMolsT-1 Quantum Chemical Test Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/58bcf21ca85b6
  21. A. Barnard, 2016, Nanodiamond Data Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/571F076D050B1
  22. A. Barnard, B. Sun, H.Q. Shi, 2016, Graphene Nanoake Data Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/57998CC4D7891
  23. A. Barnard, H. Wilson, 2015, Silicon Quantum Dot Data Set, v2. CSIRO Data Collection, http://doi.org/10.4225/08/5721BB609EDB0
  24. A. Barnard, 2014, H. Wilson, Germanium Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546A9FB866B37
  25. A. Barnard, 2014, H. Wilson, Silicon Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546AA009190C4
  26. A. Barnard, 2014, Diamond Nanoparticle Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/546A9F79EC99C
  27. A. Barnard, 2014, Graphene Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F61EC81EE3
  28. A. Barnard, 2014, Carbide Nanotube Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F61B0666C1
  29. A. Barnard, 2014, Boron Nitride Nanotube Structure Set, v1. CSIRO Data Collection, http://doi.org/10.4225/08/541F6178B7905

Published Software

  1. G. Opletal, M. Golebiewski, A. Barnard, 2020, Simulated Nanostructure Assembly with Protoparticles (SNAP), v1. CSIRO Software Collection. https://doi.org/10.25919/5e5c662a0597e
  2. A. Barnard, A. Parker, 2019, Iterative Label Spreading, v1. CSIRO Software Collection. https://doi.org/10.25919/5d806280b91a9
  3. B. Motevalli Soumehsaraei, A. Barnard, 2019, Archetypal Analysis Package, v1. CSIRO Software Collection. https://doi.org/10.25919/5d3958889f7ff
  4. B. Motevalli Soumehsaraei, A. Barnard, 2019, QuickThermo, v1. CSIRO Software Collection. https://doi.org/10.25919/5d39589c523d4
  5. G. Opletal, A. Barnard, 2018, PorosityPlus, v1. CSIRO Software Collection. https://doi.org/10.25919/5b8e0ffa8afaa

 

 

2019 AMMA Medal - Association of Molecular Modellers of Australasia
2018 Fellow - Royal Society of Chemistry (FRSC), UK
2018 100 Woman of Chemistry - Royal Society of Chemistry, UK
2017 Woman of Achievement - Black & White Foundation, Vision Australia, AUST
2014 Feynman Prize in Nanotechnology (Theory) - Foresight Institute, Palo Alto, USA
2014 ACS Nano Lectureship (Asia-Pacic) - American Chemical Society, USA
2012 Fellow - Australian Institute of Physics (FAIP), AUST
2010 Distinguished Lecturer - IEEE, South Australia, AUST
2010 UNSW Eureka Prize for Scientic Research - Australian Museum, AUST
2010 Frederick White Prize - Australian Academy of Science, AUST
2009 Chief's Science Research Award - CSIRO Materials Science & Engineering, AUST
2009 Malcolm McIntosh Prize for Physical Scientist of the Year - Prime Minister's Prizes for Science,
Department of Innovation, Industry, Science & Research, AUST
2009 Mercedes-Benz Australian Environmental Research Award - Banksia Foundation, AUST
2009 Future Summit Leadership Award - Australian Davos Connection, AUST
2009 Young Scientist Prize in Computational Physics - International Union of Pure and Applied Physics
2009 J G Russell Award - Australian Academy of Science, AUST

2008 Alumnus of the Year Award - RMIT University, AUST

2008 Queen Elizabeth II Fellowship - Australia Research Council, AUST

2008 L'Oreal Australia "For Women in Science" Award - L'Oreal - UNESCO, AUST

2005 Extraordinary Junior Research Fellowship - The Queen's College, Oxford, UK

2005 Violette \& Samuel Glasstone Fellowship - University of Oxford, UK

2004 Innovation Award (Student Category) - RMIT University, AUST

2004 University Research Prize - RMIT University, AUST

2003 CNM Distinguished Postdoctoral Fellowship - Argonne National Laboratory (ANL), USA

 

 

Boards

  • Independent Director, Board of Directors, New Zealand eScience Infrastructure (NeSI), NZ (2019 – current)
  • Advisory Board, Our Health in Our Hands (OHIOH), ANU, AUST (2019 – current)
  • Advisory Board, ChoiceFlows Inc., North Carolina, USA (2019 – current)
  • Scientific Advisory Board, Centre for Biomedical Data Visualisation (BioViS), Garvan Institute, AUST (2017 – current)
  • External Advisory Board, AIBN Centre for Theoretical and Computational Molecular Science (CTCMS), University of Queensland, AUST (2014 – current)
  • Course Advisory Board (Masters program), Department of Chemistry and Physics, La Trobe University, AUST (2015 – 2017)
  • External Advisory Board, Centre for the Study of Choice (CenSoC), University of Technology - Sydney (UTS), AUST (2011 – 2013)

 

Panels

  • Assessment Panel, New Zealand–Singapore Data Science Research Programmes, NZ Ministry of Business, Innovation & Employment and Singapore Data Science
    Consortium (2020-current)
  • Expert Panel, Competitive Research Programme, National Research Foundation, Singapore (2019-current)
  • Selection Panel, Frederick White Medal, Australian Academy of Science  (2019-current)
  • Jury, L'Oréal For Women in Science Fellowships, AUST/NZ (2016 – current)
  • Assessment Panel, New Zealand Data Science Research Programmes (NZ$49mil investment), Ministry of Business, Innovation & Employment, NZ (2019)
  • Mid-term Review Panel, Centres of Research Excellence (CoREs, 10 in total), Tertiary Education Commission, NZ (2017)
  • Panel of Expert Advisors (Physical Sciences), The Nature Index, Nature Publishing Group, UK (2013 – current)
  • Panel of Judges, Eureka Prize for Early Career Research, Australian Museum, AUST (2011 – 2016) 

 

Committees

  • Chair, Australian Leadership Computing Grants (ALCG), National Computational Infrastructure, AUST (2020 – current)
  • Chair, User Reference Group, Pawsey Supercomputing Centre Capital Refresh ($70mil NCRIS investment), AUST (2018 – current)
  • Deputy Chair, Change Management Group, Pawsey Supercomputing Centre Capital Refresh ($70mil NCRIS investment), AUST (2018 – current)
  • Materials Research Society (MRS) Award Nominations Subcommittee, USA (2019 – current)
  • Chair, National Computational Merit Allocation Scheme (NCMAS), AUST (2018 – 2019)
  • Procurement Steering Committee, National Computational Infrastructure ($70mil NCRIS investment), AUST (2018 – 2019)
  • Data61 Executive Science & Technology Sub-Committee, CSIRO, AUST (2017 – 2018)
  • Pawsey Supercomputing Centre Partner Allocation Scheme, AUST (2015 – 2019)
  • Data61 Rewards (Promotions) Committee, CSIRO, AUST (2017 – 2018)
  • Data61 Scholarship Committee (VIC/TAS/WA, NSW/SA), Data61, CSIRO, AUST (2016 – 2018)
  • Athena Early Adopters Committee, Pawsey Supercomputing Centre, AUST (2017)
  • Deputy Chair, National Computational Merit Allocation Scheme (NCMAS), AUST (2016 – 2017)
  • Pawsey Supercomputing Uptake Strategy Group, AUST (2015 – 2016)
  • National Computational Merit Allocation Scheme (NCMAS), AUST (2012 – 2016)

 

Editorial Boards

  • International Executive Board, Nano Futures, Institute of Physics (2018 – current)
  • Senior Advisory Board, Journal of Physics: Materials, Institute of Physics (2018 – current)
  • Editorial Advisory Board, Nanoscale, Royal Society of Chemistry (2013 – current)
  • Guest Editor, Special Issue on Artificial Intelligence in Electrochemical Energy Storage, Batteries & Supercaps, Wiley-VCH (2020)
  • Guest Editor, Special Issue on Advanced Material Modelling, Machine Learning and Multiscale Simulation, Journal of Physics: Materials, IOP (May 2019)
  • Senior Associate Editor, Science Advances, AAAS (2014 – 2017)
  • Guest Editor, Special Issue on Modelling for the Nanoscale, Nanoscale, RSC (February 2012)
  • Guest Editor, Special Issue on CVD Growth of Nanodiamond, Advanced Materials-CVD, Wiley (September 2008)
  • Guest Editor, Special Issue on Theory and Simulation of Nanomorphology, Journal of Computational and Theoretical Nanoscience (March 2007)
  • Associate Editor, Journal of Computational and Theoretical Nanoscience, American Scientific Publishers (2005 – 2011)

 

Updated:  1 June 2019/Responsible Officer:  Dean, CECS/Page Contact:  CECS Marketing