Models of Robustness in Temporal Planning and Scheduling

Jing Cui – PhD Student
cui.jing@anu.edu.au

Supervisors: Dr. Patrik Haslum, Prof. Sylvie Thiebaux and Dr. Hassan Hijazi

Motivation
- Explore a variety of robustness measures
- Figure out what exactly these metrics measure
- Find relationships among the metrics
* Give a better way to measure robustness

Background
1. Partial Order Schedules (Policella 2004)
 - A consistent Simple Temporal Network
 - Defined and added time constraints

2. Robustness Measures
 a. Flexibility (Aloulou and Portmann 2003)
 - the fraction of pairs with no relation
 \[
 \text{flex} = \frac{|\{(a, a')| a_i \neq a_i \wedge a_j = a_j\}|}{n(n - 1)}
 \]
 - the degree of interaction
 b. Fluidity (Cesta, Oddi and Smith 1998)
 - the average slack between pairs of activities
 \[
 \text{fldt} = \sum_{i=1}^{n} \sum_{j=1/j \neq i} \frac{\text{slack}(a_i, a_j)}{H \times n \times (n - 1)} \times 100
 \]
 - the ability to absorb temporal variation
 c. Robust Makespan (Na and Fei 2012)
 - Durational Uncertainty: \(d_i = d_i + \tilde{z}_i\)
 - Robust Makespan: \(P(\text{makespan} \leq F^*) \geq 1 - \epsilon\)
 - Probabilistic model with approximation

3. STNU and Dynamic Control
 a. STN with Uncertainty (Vidal 1999)
 - Requirement and Contingent Links
 b. Dynamic Control
 - Checking dynamic controllability for a STNU is strongly polynomial (Morris, Muscettola and Vidal, 2001 and 2005)
 - The problem of optimizing a function of link bounds, subject to dynamic controllability is NP-hard (Wah and Xin, 2006)

Constraint Model of Dynamic Controllability

Introduced by Wah and Xin 2004

Shortest Path

\[
\begin{align*}
\text{if } & iBC \geq 0 \\
\text{then } & iAC \leq u_{AB} + l_{BC} \leq u_{AC} \\
\text{if } & iBC \geq 0 \\
\text{then } & iAB \leq u_{AB} - l_{BC} \\
\text{if } & iAB \geq 0 \\
\text{then } & iAC \leq u_{AB} + l_{BC} \leq u_{AC} \\
\end{align*}
\]

Precedence and Waits

\[
\begin{align*}
\text{if } & iBC \geq 0 \\
\text{then } & w_{ABC} \geq w_{AB} - u_{DB} \\
\text{if } & w_{ABC} \geq 0 \\
\text{then } & w_{ADC} \geq w_{ABC} - i_{BC}^{R/C} \\
\end{align*}
\]

Waits Regression

\[
\begin{align*}
\text{if } & w_{ABC} \geq 0 \\
\text{then } & w_{ADC} \geq w_{ABC} - u_{DB} \\
\end{align*}
\]

Waits Bounds

\[
\begin{align*}
\text{if } & w_{ABC} \geq 0 \\
\text{then } & w = i^R \leq l^C \\
\end{align*}
\]

The MIP model =>

Maximum Delay with Dynamic Control

1. A new worst-case robustness measure
2. The temporal tolerance is represented by the shortest maximal delay

\[
\text{MD} = \max(Z)
\]

s.t. \(l(e) = \text{duration}(e)\)

\[
\text{u}(e) = l(e) + z(e)\]

\[
Z \leq z(e)\]

\[
L(e) \leq l(e) \leq u(e) \leq U(e)\]

DC constraints

Results

<table>
<thead>
<tr>
<th>STNU</th>
<th>Topology</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob Set</td>
<td>Nodes</td>
<td>Links Cts</td>
</tr>
<tr>
<td>J10</td>
<td>22</td>
<td>62.35</td>
</tr>
<tr>
<td>OJ10</td>
<td>22</td>
<td>51.39</td>
</tr>
<tr>
<td>OJ12</td>
<td>26</td>
<td>69.68</td>
</tr>
<tr>
<td>OJ14</td>
<td>30</td>
<td>89.68</td>
</tr>
<tr>
<td>OJ20</td>
<td>38</td>
<td>152.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STNU</th>
<th>Topology</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob Set</td>
<td>Nodes</td>
<td>Links Cts</td>
</tr>
<tr>
<td>J10</td>
<td>22</td>
<td>62.35</td>
</tr>
<tr>
<td>OJ10</td>
<td>22</td>
<td>51.39</td>
</tr>
<tr>
<td>OJ12</td>
<td>26</td>
<td>69.68</td>
</tr>
<tr>
<td>OJ14</td>
<td>30</td>
<td>89.68</td>
</tr>
<tr>
<td>OJ20</td>
<td>38</td>
<td>152.12</td>
</tr>
</tbody>
</table>