Characterizing multicrystalline silicon ingots
S.Y. Lim1, M. Forster2, D. Macdonald1, 1The Australian National University 2Apollonsolar

INTRODUCTION
One of the main challenges in the production of multicrystalline ingots is the control of crystal quality which is strongly related with the solidification interface shapes.

Non-planar solidification interface shapes influence:
- non-uniform net dopant density distribution
- metallic impurity segregation
- columnar grain growth

Some conventional measuring methods include X-ray topography, ultrasound imaging or camera attached to a transparent furnace.

The goal of this work is to introduce a new method which enables the 3D estimation of solidification interface geometry along the ingot height.

PROCEDURE

MATERIAL USED:
Compensated multicrystalline
(Image taken from Btimaging)

PROCEEDURE:

1. PL imaging
2. Calibration
3. Conversion based on Scheil’s law

PL MEASUREMENTS & CALIBRATION

RESULTS

FURTHER OBSERVATIONS

CONCLUSIONS

A method for estimating solidification interface shapes is presented

Steps involves
1. PL imaging
2. Calibration
3. Conversion based on Scheil’s law

This method is useful for estimating concave/convex geometry of solid front and homogeneity of temperature field in the system. It is applicable to monocrystalline, compensated or non-compensated multicrystalline ingots.

REFERENCES

A. Cuevas, SiliconPVconference 1(2011)94-99

ACKNOWLEDGEMENTS

This work has been supported by the Australian Research Council.

ANU College of Engineering & Computer Science