Developing a HRTF Measurement Facility

Mengqi (Karan) Zhang, Wen Zhang, Rodney A. Kennedy, and Thushara D. Abhayapala

Problem

monaural sound → stereo Sound

Can we reproduce a monaural sound into a binaural sound over headphones which will sound as if it originated from a particular spatial location?

--- Beneficial

Inspiration

Auditory Localization

The differences between the sounds at the two ears provide the primary basis for human to locate the direction of a sound source.

--- Amazing

Key Element

Head-Related Transfer Function

The head related transfer function, HRTF, is a frequency response describing how a sound is filtered by the diffraction and reflection properties of the head, pinna, and torso.

--- Useful

Method: HRTF Measurement on KEMAR Manikin

- **University of Maryland**
 - Based on Reciprocity
 - Linear Sweep
 - 7 Subjects
 - 1132 Points
 - in 2003

- **Listen Project, Paris**
 - Logarithmic Sweep
 - 58 Human Subjects
 - 187 Points
 - in 2002

- **MIT Media Lab**
 - MLS
 - KEMAR Manikin
 - 710 Points
 - in 1994

- **U.C. Davis**
 - CIPI Laboratory
 - Golay-code Signals
 - KEMAR, 43 Human Subjects
 - 1250 Points
 - in 2001

Results

- **Frequency Domain Representation of HRTFs**
 - Left Ear (a) and Right Ear (b) Measured at the Direction of $\theta = 0$ and $\varphi = 0$.

We successfully set up a new HRTF database measured on the KEMAR manikin for the acoustic community.

--- Exciting

Further Research

- **Individual Differences**
 - Do further human trials to develop a theory that efficiently models the observed variation in a statistical model.

--- Interesting

Beyond HRTF

- **Signals in Astronomy**
 - Measuring and Modeling Complicated Functions of Azimuth and Elevation

This work is partly supported by NICTA.