Accelerating Scientific Workflow Management

A novel approach to scientific workflows using Aspect-Oriented Thinking (AOT) to support effective capture and reuse of intellectual effort.

Problem Situation
Scientific workflows connect together different data sources, components and processes to support research. Existing scientific workflow management methodologies are execution-centric and implementation-focused. This makes it hard and time-consuming to verify the provenance of and reuse existing workflows in a new context.

Proposed Approach
An Aspect-Oriented Thinking (AOT) approach to support the capture and reuse of concepts and ideas (intellectual effort) in workflow management. We address workflow context, provenance and agility at the concept- and execution levels, making it easier to rapidly form and evaluate research hypotheses. This will greatly enhance the scientist's ability to understand and intervene in a rapidly changing world.

Case-Study: Coupling Ecological Models Across Scale

FATE is a dynamic vegetation model which captures plant community dynamics at the patch level, but it does not model biogeochemical processes. The model code is implemented in the Pascal programming language.

LPJ is a dynamic global vegetation model of biochemical processes, coded in the C programming language. Neither FATE nor LPJ can change scale, but need to be coupled together to study plant community dynamics at the global scale.

Concept-level concerns in FATE and LPJ are described in terms of patterns representing biogeochemical processes. Programming language concerns will be described independently in patterns for C and Pascal.

Model-level concerns (scale, rules for plant-community dynamics) are specified in terms of the concept-level patterns.

Execution-level concerns (toolkit, programming language interoperability) are addressed by the automated/manual processing of the model-level workflow specification.

Original LPJ

- A dynamic global vegetation model
- Models biogeochemical processes at many scales
- Models plant community dynamics at global scale
- C code

C <-> Pascal

Coupling Specification Archetype

- Model-level concerns (scale, rules for plant-community dynamics) are specified in terms of the concept-level patterns.
- Implementation Engine for C Component
- Implementation Engine for Pascal Component

LPJ <-> FATE

Coupling Specification

- Contextual, explicit constraints:
 - Scale parameter (mortality, initialMortality)
 - Iteration parameter (iterationCount)

Original FATE

- A dynamic vegetation patch model
- Does not model biogeochemical processes
- Models plant community dynamics at patch scale
- Pascal code